

Hydrogeological Investigation

555 Canal Bank Street, Welland, ON

Client:

555 Canal Bank Developments GP Inc. 125 Villarboit Crescent, Vaughan, ON L4K 4K2

Attn: Jeffrey Swartz

Project Number: HAM-00801631-A0

Prepared By: EXP Services Inc. 1595 Clark Boulevard Brampton, ON L6T 4V1

Date Submitted: April 4, 2019 Revised: August 28, 2020

Table of Contents

1	Introd	uction	1
	1.1 1.2 1.3 1.4	Project Description Project Objectives Scope of Work Review of Previous Reports	1 1
2	Hydro	geological Setting	3
	2.1	Regional Setting	3 3
	2.2	Site Setting 2.2.1 Site Topography	4 4
3	Resul	ts	6
	3.1 3.2 3.3	Monitoring Well Details Water Level Monitoring Hydraulic Conductivity Testing 3.3.1 Single Well Response Test (SWRT) 3.3.2 In-Situ Infiltration Testing	6 8 8 9
	3.4	Groundwater Quality1	
4		ruction Dewatering Assessment	
	4.1 4.2 4.3 4.4	Construction Dewatering Rate Assumptions 1 4.1.1 Dewatering Flow Rate Estimate and Zone of Influence 1 4.1.2 Sichardt's Radius of Influence 1 Stormwater 1 Results of Construction Dewatering Rate Assessment 1 Construction MECP Water Taking Permit 1	3 3 4 4
5	Sub-D	Drain Discharge Estimate1	6
	5.1 5.2 5.3 5.4	Long-Term Dewatering Rate Assumptions 1 Preliminary Sub-Drain Flow Rate Estimate 1 Results of Post-Construction Dewatering Assessments 1 Post-Development MECP Water Taking Permit 1	6 7
6	Enviro	onmental Impact 1	8
	6.1 6.2 6.3 6.4 6.5	Surface Water Features 1 Groundwater Sources 1 Geotechnical Considerations 1 Groundwater Quality 1 Well Decommissioning 1	8 8 8

7	Conclusions and Recommendations	. 20
8	Limitations	. 21
9	References	. 22

List of Figures

Figure 1: Site Location Plan Figure 2: Surficial Geology Map Figure 3: MECP Water Well Record Map Figure 4: Borehole/Monitoring Well Location Plan Figure 5: Cross Section A – A' Figure 6: Groundwater Contour Plan

List of Appendices

Appendix A: MECP WWR Summary Table Appendix B:_Borehole Logs Appendix C: SWRT and Infiltration Testing Results Appendix D:_Laboratory's Certificates of Analysis Appendix E:_Construction Dewatering Estimates (Short-Term) Appendix F:_Post-Construction Dewatering Estimates (Long-Term) Appendix G:_Engineering Drawings

Summary

The proposed development lies north of Dain City, a rural residential area. The topography is considered relatively flat, with a gradual westerly slope towards the old (1833) canal (west) while the east side of the site has a slope towards the new (1973) bypass canal (east). The canals drain to Lake Ontario which is approximately 25 km north of the Site. There are few surface-water features onsite such as man-made drainage ditches, one (1) surface drainage on the southwest and few wetlands scattered within the woodlot areas in the northeast and southeast portions of the Site. The nearest surface water features are the old Welland canal on the west, the new Welland bypass on the east and a wetland southeast of the Site. Lake Erie is located approximately 9 km south of the Site and Lake Ontario is approximately 25 km from the Site boundary to the north. The surficial geology can be described as fine-textured glaciolacustrine deposits consisting of silt and clay, minor sand and gravel, massive to well laminated (Ministry of Northern Development and Mines, 2012). The western portion of the Site consists of man-made deposits.

As part of geotechnical investigations, a total of ten (10) monitoring wells were installed across the Site. the groundwater elevations in the shallow wells ranged from dry condition to 176.46 masl. The groundwater elevations recorded in the deep wells ranged from 168.30 masl to 175.44 masl. The highest K-value for the tested water-bearing zones is estimated to be 1.7 x 10⁻⁶ m/s and the geometric mean of the K-values is 4.9 x 10⁻⁸ m/s. The laboratory's Certificate of Analysis (CofA) for the groundwater sample collected from the Site showed that all parameters conform the Sanitary Sewer Use By-Law limits. The proposed development plan consists of a residential development which includes single family dwellings, townhouses, a mixed-use block, an elementary school, as well as the associated roadways, Site servicing and two (2) stormwater management ponds (SWMPs). One of the SWMPs is planned to be constructed southeast of the Site. Moreover, the northeast portion of the Site will be raised between 2 and 3 meters above the existing grading with native soil. Also, a proposed SWMP will be constructed south of the noted soil pile. Based on the assumptions provided in this report, the dewatering rate during the construction phase (short-term) is estimated to be 305 m³/day. As the estimated dewatering rate is between 50 m³/day and 400 m³/day, an EASR will be required to facilitate the construction dewatering program for the residential structures. Moreover, the dewatering flow rate for a single dwelling during the post-construction phase (long-term) is estimated to be 5 m³/day. As the estimated flow rate for long-term is less than 50 m^{3} /day, a permit to take-water will not be required for the post-construction phase.

1 Introduction

1.1 Project Description

EXP Services Inc. (EXP) was retained by **555 Canal Bank Developments GP Inc.** to prepare a Hydrogeological Investigation Report associated with the proposed development located at 555 Canal Bank Street, Welland, Ontario (hereinafter referred to as the 'Site').

Previously, the Site was partly occupied by an industrial facility, which was demolished at the time of preparation of this report. Based on the provided engineering drawing, the construction plan is anticipated to consist of a residential development including single family dwellings and townhouses, a mixed-use block and an elementary school, as well as the associated roadways, stormwater management pond (SWMP) and Site servicing. For this hydrogeological assessment, it is assumed that each proposed building will have one (1) level of basement. Also, the northeastern part of the proposed development will be raised by 2 to 3 meters above existing grade with native fill material. The Site location plan is shown on Figure 1. The engineering drawings are provided in Appendix G.

EXP conducted a Preliminary Geotechnical Investigation and an Environmental Site Assessment in conjunction with this investigation. The pertinent information gathered from the noted Investigations is utilized for this report.

1.2 Project Objectives

The main objectives of the Hydrogeological Investigation are as follows:

- Establish the local hydrogeological settings within the Site;
- Provide preliminary recommendations for the construction dewatering;
- Provide a preliminary assessment on the post-construction dewatering;
- Assess groundwater quality;
- Prepare a Hydrogeological Investigation Report;
- Conduct seasonal groundwater monitoring; and
- Prepare a Preliminary Water Balance Report under a separate cover.

1.3 Scope of Work

To achieve the investigation objectives, EXP has completed the following scope of work:

- Review available geological and hydrogeological information for the Site;
- Develop and conduct Single Well Response Tests (SWRT) on eight (8) monitoring wells installed in conjunction with the geotechnical investigation to evaluate hydraulic properties of the saturated soils at the Site.
- Complete eight (8) rounds of groundwater level measurements at all monitoring wells;
- Collect one (1) groundwater sample for laboratory testing of the Regional Municipality of Niagara Sanitary and Storm (Combined) Sewer By-Law parameters;

- Evaluate the information collected during the field investigation program, including borehole geological information, SWRT results, groundwater level measurements and groundwater water quality;
- Prepare site plans, cross sections, geological mapping and groundwater contour mapping for the Site;
- Provide preliminary assessments on the construction (short-term) and post-construction dewatering rates (long-term);
- Prepare a Hydrogeological Investigation Report;
- Conduct seasonal groundwater monitoring for one (1) year with monitoring events every two (2) months;
- Conduct infiltration tests to assess percolation rates of shallow soils to support the design of infiltration systems in post development reported under separate cover. Provide infiltration rates to support design of infiltration measures for stormwater management and water balance mitigations; and
- Prepare a Preliminary Water Balance Report to assess pre-development and post-development infiltration levels using a combined Thornthwaite and Mather method and GIS. The results of the percolation tests will support the sizing of the infiltration measures in post development.

The results from the infiltration tests and the Preliminary Water Balance Report will be provided under a separate cover.

The scope of work outlined above does not include a review of Environmental Site Assessments (ESA).

1.4 Review of Previous Reports

The following reports were reviewed as part of this Hydrogeological Investigation:

- EXP Services Inc. (August 10, 2020). Geotechnical Investigation, 555 Canal Bank Street, Welland, ON, prepared for 555 Canal Bank Developments GP Inc.
- Upper Canada Consultants (July 2020), Site Alteration Plan, Former John Deere Site, City of Welland, Ontario, prepared for 555 Canal Bank Developments GP Inc.
- Armstrong (May 2020), Dain City West, Draft Plan of Subdivision, Draft Site Drawing.
- EXP Services Inc. (2019), Preliminary Geotechnical Investigation, 555 Canal Bank Street, Welland, ON, prepared for Empire Communities.

2 Hydrogeological Setting

2.1 Regional Setting

2.1.1 Regional Physiography

The Site is located within a physiographic region known as the Haldimand Clay Plain. The physiographic landform is the Clay Plains. (Chapman & Putnam, 2007). These clay plains were deposited during the time of Paleo-Lake Warren (Chapman & Putnam, 2007), around 12,700 years before present. Although the area was all submerged in former Lake Warren the underlying till was not all buried by stratified clay. The till comes to surface on the low ridges of the Fort Erie Moraine.

2.1.2 Regional Geology and Hydrogeology

The surficial geology can be described as fine-textured glaciolacustrine deposits consisting of silt and clay, minor sand and gravel, massive to well laminated (Ministry of Northern Development and Mines, 2012). The western portion of the Site consists of man-made deposits. The surficial geology of the Site and surrounding areas is shown on Figure 2.

Regional groundwater flow across the area is expected to be directed towards the north. Local deviation from the regional groundwater flow pattern may occur in response to changes in topography and/or soils, as well as the presence of surface water features and/or existing subsurface infrastructure.

2.1.3 Existing Water Well Survey

Well Records from the Ministry of the Environment, Conservation and Parks (MECP) Water Well Record (WWR) Database were reviewed to determine the number of water wells present within a 500-m radius of the Site boundaries.

The MECP WWR database indicated a total of sixty-six (66) well records within a 500 m radius from the Site centroid where forty-one (41) well records were identified onsite.

The database indicated that the offsite wells were at an approximate distance of four-hundred and fortyeight (448) m or greater from the Site centroid. All offsite wells were reportedly identified as monitoring and observation wells, test holes, water supply wells, abandoned and/or listed with unknown use. Onsite well records were reportedly identified as monitoring and test holes, water supply well, abandoned and/or listed with unknown use.

The Well Identification Numbers (Well ID No.) of the offsite water supply wells are 6603366, 6603887, 6603968 and 6604005, where they are reportedly located 450 to 751 meters from the Site centroid. The Well ID No. of the only onsite water supply well is 6604290; it is seventy-five (75) m from the Site centroid.

The reported depth to water levels ranged approximately from 4.6 m to 46.0 meters below ground surface (mbgs).

Based on the onsite water supply wells' date of installations and since the area is municipally serviced, it is unknown if the noted water supply wells are still active.

The locations of the MECP WWR within 500 m of the Site are shown on Figure 3. A summary of the WWR is included in Appendix A.

2.2 Site Setting

2.2.1 Site Topography

The proposed development lies north of Dain City, an urban area. The topography is considered relatively flat, with a gradual westerly slope towards the old (1833) canal (west) while the east side of the Site has a slope towards the new (1973) bypass (east). The canal drains to Lake Ontario which is approximately 25 km north of the Site.

As indicated on the borehole logs included in Appendix B, the surface elevation of the Site ranges between approximately 176.61 to 177.90 meters above sea level (masl).

2.2.2 Local Surface Water Features

There are a few surface-water features onsite, such as scattered man-made drainage ditches, few small wetlands and one (1) small pond on the southwest of the Site. The other nearest surface water features are the old Welland canal on the west, new Welland bypass on the east, as well as a wetland southeast of the Site. Lake Erie is located approximately 9 km south of the Site and Lake Ontario is approximately 25 km from the Site boundary to the north.

2.2.3 Local Geology and Hydrogeology

A summary of subsurface soil stratigraphy is provided in the following paragraphs. The soil descriptions are based on the geotechnical investigation report (EXP, 2019) and they are summarized for the hydrogeological interpretations. As such, the information provided in this section shall not be used for the construction design purposes.

The detailed soil profiles encountered in each borehole and the results of moisture content determinations are presented on the attached borehole logs (Appendix B). The interpreted geology is provided in a cross-section on Figure 5. The soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the hydrogeological investigation and should not be interpreted as exact planes of geological change.

The "Notes on Sample Description" preceding the borehole logs form an integral part of and should be read in conjunction with this report. The following is a brief description of the soil conditions encountered during the investigation.

Based on the results of the geotechnical investigation, the general subsurface soil stratigraphy consist of the following units from top to maximum depth of investigation onsite as follows:

Topsoil

A surficial layer of topsoil was encountered at Boreholes BH-01 to BH-03, BH-06, BH-08 to BH-12, BH-19, and BH-25 to BH-27. The thickness of the topsoil at the borehole locations ranged from approximately 50 mm to 150 mm.

It should be noted that the topsoil measurements were carried out at the borehole locations only and were found to be variable. A more detailed analysis (involving test pits) is recommended to accurately quantify the amount of topsoil to be removed for construction purposes. Consequently, topsoil quantities should not be established from the information provided at the widely spaced borehole locations only.

Fill/ Reworked Native Soil

Fill (or reworked native soil) was encountered below the surficial topsoil or pavement structure at nineteen of the twenty-seven boreholes locations and extended to depths ranging from approximately 0.3 m to 4.6 m below existing grade. The fill generally consisted of brown or grey, moist silty clay with traces of sand, gravel, rootlets, and wood fragments. Black organic staining was noted at Boreholes BH-04, BH-08, BH-16, BH-19, BH-20, BH-21, BH-23, and BH-27. Moisture contents of the material ranged from 7 to 39 percent.

Silty Clay

Native silty clay was encountered below the surficial topsoil / pavement structure in Boreholes BH-09, BH-11 to BH-14, BH-18, BH-22, and BH-24, and below the fill at all the remaining borehole locations. The silty clay extended to the borehole termination depths of 6.6 m to 12.8 m below grade at all the borehole locations. The silty clay was brown, generally became greyish brown with depth, and was in a moist to wet state with moisture contents ranging from 8 to 48 percent. SPT N values ranged from 0 to 24 blows per 305 mm penetration. Based on undrained shear strengths ranging from 15 to greater than 225 kPa as determined by pocket penetrometer measurements and in-situ shear vane testing, the silty clay is classified as soft to hard in consistency. It should be noted that the stratum generally became weaker with depth.

3 Results

3.1 Monitoring Well Details

The monitoring well network installed as part of the Geotechnical Investigations at the Site consists of the following:

- Six (6) shallow monitoring wells, including BH/MW 2, BH/MW 4, BH/MW 6, BH/MW 8, BH/MW 15 and BH/MW 27 were installed to an approximate depth range from 5.9 to 6.9 mbgs;
- Four (4) deep well monitoring wells, including BH/MW 1, BH/MW 3, BH/MW 9 and BH/MW 10 were installed to an approximate depth of 9 mbgs.

Each well was equipped with a 50-mm (2-inch) PVC casing, a thee (3)-meter long screen and with overground protective casing.

Borehole logs and monitoring well installation details are provided in Appendix B. The monitoring well locations are shown on Figure 4.

3.2 Water Level Monitoring

As part of the Hydrogeological Investigation, static water levels were recorded in the monitoring wells installed outside of the existing building during eight (8) monitoring events, including February 19, March 4, April 15, June 3, August 8 and October 11, 2019, as well as January 23 and July 27,2020. A summary of all static water level data as it relates to the elevation survey is summarized in Table 3-1 below.

Accordingly, the groundwater elevation in the shallow wells ranged from dry condition (at BH/MW 2 and BH/MW 3 on February 19, March 4, April 15 and June 3, 2019, as well as August 8, 2019 at BH/MW 3) to 176.45 masl (0.72 mbgs at BH/MW 15 on July 27, 2020). The groundwater elevations recorded in the deep wells ranged from dry condition (at BH/MW 9 on February 19, March 4, April 15 and October 11, 2019, as well as July 27, 2020) to 175.44 masl (1.18 mbgs at BH/MW 10 on October 11, 2019 and January 23, 2020).

Groundwater contours are delineated for the shallow water-bearing zone of the Site on Figure 6. The groundwater flow direction in the shallow zone is interpreted to be southeast.

Groundwater levels are expected to show seasonal fluctuations and vary in response to prevailing climate conditions; this may also affect the direction and rate of flow.

Monitoring Well ID	Ground Surface Elevation (masl)	Stick Up (+) / Stick Down (-) (m)	Approximate Full Well Depth (mbgs)	Depth	19-Feb-19	4-Mar-19	15-Apr-19	3-Jun-19	8-Aug-19	11-Oct-19	23-Jan-20	27-Jul-20				
				mbTOP	5.46	7.75	6.15	5.89	5.77	5.58	5.39	4.68				
BH/MW 1	176.88	1.02	9.1	mbgs	4.44	6.73	5.13	4.87	4.75	4.56	4.37	3.66				
				masl	172.44	170.15	171.75	172.01	172.13	172.32	172.51	173.23				
				mbTOP								Inaccessible/				
BH/MW 2	177.39	0.08	6.9	mbgs	DRY	DRY	DRY	DRY	Inaccessible	Inaccessible	Inaccessible	Damaged				
				masl								Damaged				
				mbTOP								Inaccessible/				
BH/MW 3	177.90	0.16	9.0	mbgs	DRY	DRY	DRY	DRY	DRY	Inaccessible	Inaccessible	Damaged				
				masl												
	177.22			mbTOP	5.68	3.47	2.32	2.21	2.12	2.47	2.43	2.03				
BH/MW 4		1.10	6.1	mbgs	4.59	2.38	1.22	1.12	1.02	1.37	1.34	0.93				
				masl	172.63	174.85	176.00	176.11	176.20	175.85	175.89	176.29				
				mbTOP	2.88	2.33	1.70	1.26	1.23	1.67	1.47	Inaccessible/				
BH/MW 6	177.24	0.27	5.9	mbgs	2.61	2.06	1.43	0.99	0.96	1.40	1.20	Damaged				
				masl	174.63	175.18	175.81	176.26	176.28	175.85	176.04	•				
				mbTOP	6.45	5.41	3.53	2.83	2.52	2.50	2.29	2.36				
BH/MW 8	176.95	1.06	6.0	mbgs	5.40	4.35	2.47	1.78	1.46	1.45	1.24	1.30				
				masl	171.56	172.60	174.48	175.18	175.49	175.51	175.71	175.65				
								mbTOP				9.15	9.17		9.10	
BH/MW 9	177.18	0.29	9.0	mbgs	DRY	DRY	DRY	8.86	8.88	DRY	8.81	DRY				
				masl				168.33	168.30		168.37					
				mbTOP	2.75	2.68	2.37	2.29	2.37	2.14	2.14	2.18				
BH/MW 10	176.61	0.97	9.2	mbgs	1.78	1.71	1.40	1.33	1.40	1.18	1.18	1.22				
				masl	174.83	174.90	175.21	175.29	175.21	175.44	175.44	175.40				
				mbTOP								1.69				
BH/MW 15	177.17	0.91	5.9	mbgs	-	-	-	-	-	-	-	0.72				
				masl								176.45				
				mbTOP								3.05				
BH/MW 27	176.77	0.90	6.4	mbgs	-	-	-	-	-	-	-	2.09				
				masl								174.69				

Table 3-1: Summary of Measured Groundwater Elevations

Notes:

mbTOP meters below top of pipe mbgs: meters below ground surface masl: meters above mean sea level * Based on field measurements

3.3 Hydraulic Conductivity Testing

3.3.1 Single Well Response Test (SWRT)

Seven (7) Single Well Response Tests (SWRT's) were completed on monitoring wells on March 4, 2019 and July 27, 2020. The tests were completed to estimate the saturated hydraulic conductivity (K) of the soils at the well screen depths.

The static water level within each monitoring well was measured prior to the start of testing. In advance of performing SWRTs, each monitoring well underwent development to remove fines introduced into the screens following construction. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. Each monitoring well was permitted to fully recover prior to performing SWRTs.

Hydraulic conductivity values were calculated from the SWRT and constant rate test data as per Hvorslev's solution included in the Aqtesolv Pro. V.4.5 software package. The semi-log plots for normalized drawdown versus time are included in Appendix C. A summary of the hydraulic conductivity (K) values estimated from the SWRTs are provided in Table 3-2.

Monitoring	Well Depth	Screen Inte	erval (mbgs)	Soil Formation	Estimated Hydraulic						
Well	(mbgs)*	from	to	Screened**	Conductivity (m/s)						
BH/MW 1	9.1	6.1	9.1	Silty Clay	1.0E-8						
BH/MW 4	6.1	6.1 3.1 6.1 Silty Clay 6.0 3.0 6.0 Silty Clay 6.0 3.0 6.0 Silty Clay		5.6E-9							
BH/MW 6	6.0			Silty Clay	1.7E-6						
BH/MW 8	6.0			Silty Clay	2.1E-8						
BH/MW 10	9.3	6.3	9.3	Silty Clay	1.3E-8						
BH/MW 15	5.9	2.9	5.9	Silty Clay	4.5E-7						
BH/MW 27	6.4	3.4	6.4	Silty Clay	5.7E-8						
	Highest Estimated K Value										
	Arithmetic Mean of K Values										
			Geometric Mean of Estimated K Values								

Table 3-2: Summary of Hydraulic Conductivity Testing

Notes:

*Well depth is based on the field measurements

** Soil descriptions are based on the borehole logs.

SWRTs provide estimates of K for the geological formation in the immediate media zone surrounding the well screens and may not be representative of bulk formation hydraulic conductivity. As shown in Table 3-2, the highest K for the tested water-bearing zones is 1.7×10^{-6} m/s at BH/MW 6 and the geometric mean of the K values is 4.9×10^{-8} m/s. The arithmetic mean of K values for overburden is 3.2×10^{-7} m/s.

3.3.2 In-Situ Infiltration Testing

A total of six (6) infiltration tests were completed at the selected locations, including IT-1 through IT- 6 on July 8 and 27, 2020. The hydraulic conductivities of unsaturated soil horizons were estimated using the Reynold's method (Reynolds et.al, 2015 and Reynolds, 2016) as per the Toronto and Region Conservation Authority's guidelines (TRCA, 2012 and TRCA 2019). A summary of the hydraulic conductivity (K) values estimated from the infiltration tests are provided in Table 3-3. The calculations are provided in Appendix C. The infiltration test locations are shown on Figure 4.

Test Locations (mbgs)*		Tested Lithologic Unit	Estimated Hydraulic Conductivity (m/s)	Design Infiltration Rate (DIR) (mm/hr)	Percolation Time (min/cm)
IT-1	0.62	Clay, trace silt	2.6E-7	13	47
IT-2	0.56	Clay, some silt and trace organics	1.2E-7	11	57
IT-3	0.65	Clay, trace silt	3.3E-8	7	81
IT-4	0.54	Fill (silty clay, trace gravel)	9.9E-6	34	18
IT-5	0.56	Clay, some silt	5.4E-7	16	38
IT-6	0.61	Clay, some silt	1.0E-7	10	60
		Geometric Mean	2.8E-7	14	44

Table 3-3: Summary of Hydraulic Conductivity Testing

Notes:

*mbgs: meters below ground surface

* Soil descriptions are based on the field observations

Based on the infiltration test results, the geometric mean of estimated design infiltration rates is 14 mm/hr. The estimated design infiltration rate is less than 15 mm/h and therefore if an infiltration system is considered to be installed at the Site, a sub-drain system will be required to be installed below the future infiltration systems as per the TRCA's guidelines. The design infiltration rates (DIR) can be used for designing LID system/s to enhance post-development groundwater infiltration to help maintain the pre-development groundwater infiltration rate at the Site. The results of LID calculations are provided in Attachment C.

3.4 Groundwater Quality

To assess the suitability for discharge of pumped groundwater to sewers owned by the City of Welland during dewatering activities, one (1) groundwater sample was collected from monitoring well BH/MW 10 on March 4, 2019 using a peristaltic pump. Prior to collecting the noted water sample, approximately three (3) standing well volumes of groundwater were purged from the noted well.

The sample was collected unfiltered and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted for analysis to Maxxam Analytics Inc., a CALA certified independent laboratory in Mississauga, Ontario.

When compared to the Regional Municipality of Niagara's Sanitary and Storm (Combined) Sewer By-Law Limits the laboratory's Certificate of Analysis (CofA) showed that all parameters conform the By-Law limits. Analytical results are provided in Appendix D.

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge into the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

The water quality results presented in this report are not representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase as required.

An agreement to discharge to the sewers owned by the City of Welland will be required prior to discharging dewatering effluent.

Also, the Environmental Site Assessment Report(s) should be reviewed for more information on the groundwater quality conditions at the Site.

4 Construction Dewatering Assessment

4.1 Construction Dewatering Rate Assumptions

Based on the provided engineering drawings, the construction plan consists of a residential development which includes single family dwellings, townhouses, a mixed-use block, an elementary school, as well as the associated roadways, Site servicing and two (2) stormwater management ponds (SWMPs). For this hydrogeological assessment, it is assumed that each proposed building will have one (1) level of basement. The engineering drawings are provided in Appendix G. EXP should be retained to review the assumptions outlined in this section, should the proposed shoring design change. Table 4-1 presents the assumptions used to calculate the dewatering rate for the Site services.

	Input Paramet	er	Assumption	Notes				
Gro	ound surface ele	vation	177.9 masl	Highest ground surface elevation based on the geotechnical borehole logs				
G	roundwater elev	ation	177.28 masl	The highest groundwater elevation of 176.28 masl recorded at BH/MW 6 on August 8, 2019 plus one (1) meter to account for seasonal fluctuations				
Lowest	Underg	round Services	173.9 masl	Assumed to be 4 mbgs and 5 mbgs for underground services and the southeast SWMP, respectively				
Excavation		Southwest	172.9 masl	One (1) mbgs for the northeast SWMP (Upper				
Elevation	SWMP	Northeast	175.88 masl	Canada Consultants, 2020) and based on the exiting ground surface elevation of 176.88 masl				
	Underg	round Services	172.9 masl					
Dewatering target elevation	SWMP	Southwest	171.9 masl	Assumed to be approx. 1 m below the lowest excavation elevation				
	SVVIVIP	Northeast	174.88 masl					
Base c	of the Water-Bea	ring Zone	170.4 masl	Assumed				
	Underg	round Services	500 m² (100 m x 5 m)	Assumed				
Excavation Area	014/4/5	Southwest	11,111 m ² (189.6 m x 58.6 m)	Based on the proposed development plan (Armstrong, 2020 and Upper Canada Consultants,				
	SWMP	Northeast	1,125 m² (45 m x 25 m)	2020) and the information provided by client				
Нус	draulic Conductiv	vity (K)	3.2 x 10 ⁻⁷ m/s	Arithmetic mean of K values estimated for overburden				

Table 4-1 Dewatering Estimate Assumptions – Underground Services and SWMP

Note: based on the provided Site grading plan, only a limited area on the eastern portion of the Site is planned to be raised by approximately 2 to 3 meters above the existing grade (Appendix E). Therefore, the above assumptions are applicable for most of the Site area.

Table 4-2 presents the assumptions used to calculate the dewatering rate for the residential buildings of the Site.

Input Parameter	Assumption	Notes				
Ground surface elevation	177.9 masl	Highest ground surface elevation based on the geotechnical borehole logs				
Groundwater elevation	177.28 masl	The highest groundwater elevation of 176.28 masl recorded at BH/MW 6 on August 8, 2019 plus one (1) meter to account for seasonal fluctuations				
Lowest footing elevation	175.4 masl	Assumed to be 2.5 mbgs. According to the geotechnical report, the footings are recommended to be placed above 3 mbgs due to the soil conditions (EXP, 2019).				
Lowest basement top elevation	175.9 masl	Assumed to be 2 mbgs for one (1) level of basement.				
Dewatered elevation target	174.4 masl	Assumed to be approx. 1 m below the lowest excavation elevation				
Base of the Water-Bearing Zone	170.4 masl	Assumed				
Excavation Area	2,500 m² (~250 m x 10 m)	It is assumed to be open for 50 single dwellings per excavation phase. Each single dwelling is assumed to cover an approximate area of 50 m ² (10 m x 5 m).				
Hydraulic Conductivity (K)	3.2 x 10 ⁻⁷ m/s	Arithmetic mean of K values estimated for overburden				

Note: based on the provided Site grading plan, only a limited area on the eastern portion of the Site is planned to be raised by approximately 2 to 3 meters above the existing grade (Appendix E). Therefore, the above assumptions are applicable for most of the Site area.

4.1.1 Dewatering Flow Rate Estimate and Zone of Influence

The Dupuit equation for steady linear flow to both sides of an excavation through an unconfined aquifer resting on a horizontal impervious surface was used to obtain a flow rate estimate. Dewatering flow rate is expressed as follows:

$$Q_w = xK(H^2 - h^2)/Lo$$

Where:

villele	•
Qw	= Rate of pumping (m ³ /sec)
Х	= Length of excavation (m)
K	= Hydraulic conductivity (m/sec)
Н	= Saturated thickness beyond the influence of pumping (static groundwater elevation)
(m)	
h	 Saturated thickness above the base of aquifer in an excavation (m)
Lo	= Distance of influence (m)

It is expected that the initial dewatering rate will be higher to remove groundwater from within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed, primarily from storage resulting in lower seepage rates into the excavation. The calculations for dewatering flow rates during the construction phase are provided in Appendix E.

4.1.2 Sichardt's Radius of Influence

The radius of influence (ROI) for the construction dewatering was calculated based on Sichardt's equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible. This empirical formula was developed to provide flow rates using the steady state flow dewatering equations, as discussed below.

The estimated radius of influence (R_o) of pumping based on Sichardt's formula is described as follows:

$$\mathbf{R}_{0} = C(H - h)\sqrt{K}$$

Where:

Ro = Estimated radius of influence (m)

- H = Saturated aquifer thickness (m)
- h = Lowered saturated aquifer thickness (m)
- K = Hydraulic conductivity (m/sec)

C = Constant (3,000)

The calculations for radius of influence are provided in Appendix E.

4.2 Stormwater

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Therefore, the dewatering rates at the Site should also include removing stormwater from the excavation.

A 15-mm precipitation event was utilized for the estimate. The calculation for the stormwater input estimate is included in Appendix E.

A two (2) years storm event over a 24-hour period is approximately 59.1 mm and a hundred (100) years storm event over a 24-hour period is 129.6 mm

http://www.mto.gov.on.ca/IDF_Curves/results_out.shtml?coords=42.957952,-79.24751.

During large precipitation events, the water should be retained onsite to not exceed the allowable water taking and discharge limits, as necessary.

4.3 Results of Construction Dewatering Rate Assessment

Based on the assumptions provided in this report, the results of the dewatering rate estimate given in Table 4-3.

Lo	cation	Peak Dewatering Flow Rate Including Safety Factor and Precipitation-Rounded-Up (m ³ /day)						
Undergro	und Services	72						
SWMP	Southwest	305						
SWIVIF	Northeast	70						
,	ngle dwellings ruction phase	188						

 Table 4-3 Summary of Dewatering Flow Rate Estimate

The calculations for the peak dewatering rates are provided in Appendix E. This peak dewatering flow rates accounts for accumulation of some precipitation, seasonal fluctuations in the groundwater table, flow from beddings of existing sewers and variation in hydrogeological properties beyond those encountered during this study. This peak dewatering flow rate also provides additional capacity for the dewatering contractor. It is the responsibility of the contractor to ensure dry conditions are always maintained within the excavation at all costs.

4.4 Construction MECP Water Taking Permit

In accordance with the Ontario Water Resources Act, if groundwater dewatering rates falls between 50 m³/day and 400 m³/day, an EASR will be required from the MECP.

Based on the highest dewatering estimate of approximately 305 m³/day, an online registration in the EASR will be required to facilitate the construction dewatering program.

5 Sub-Drain Discharge Estimate

5.1 Long-Term Dewatering Rate Assumptions

It is our understanding that the development plan includes a permanent foundation sub-drain system that will ultimately discharge to the municipal sewer system if conventional footings are installed. The details of the assumptions are outlined in Table 4-1 of Section 4.1. However, the dewatering target for post-construction is assumed to be 0.5 m below the lowest top slab elevation.

5.2 Preliminary Sub-Drain Flow Rate Estimate

To estimate the groundwater flow to the future sub-rain, the Dupuit equation for steady linear flow to both sides of a partially penetrating excavation through an unconfined aquifer resting on a horizontal impervious surface was used to obtain a flow rate estimate, which is expressed as follows:

$$Q_w = \left[0.73 + 0.23\left(\frac{P}{H}\right)\right] x K(H^2 - h^2) / Lo$$

Where:

Qw = Rate of pumping (m³/sec)

x = Length of excavation (m)

P = Depth of penetration of drainage (m)

K = Hydraulic conductivity (m/sec)

H = Saturated thickness of water-bearing zone beyond the influence of pumping (static groundwater elevation) (m)

h = Saturated thickness above the base of water-bearing zone in an excavation (m)

Lo = Distance of influence (Ro/2) (m)

The calculations for the dewatering flow rates are provided in Appendix F.

5.3 Results of Post-Construction Dewatering Assessments

Based on the assumptions provided in this report (outlined in Section 4.1), the results of the long-term discharge volume estimate can be summarized as follows:

Proposed Structure	Peak Dewatering Flow Rate Including Factor of Safety (m³/day)
Single Dwelling	5

Table 5-1 Summary of Post-Construction Dewatering Flow Estimates

Intermittent cycling of sump pumps and seasonal fluctuation in groundwater regimes should be considered for pump specifications. A safety factor was applied to the flow rate to accommodate the variability in seasonal water level fluctuations.

This preliminary sub-drain rate estimate is preliminary and based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this investigation may significantly influence the sub-drain discharge volumes. As a result, the exact volume discharged will be confirmed once the system is operational. It is recommended that once the sub-drain systems are in place, that a flow meter be installed at the sump(s) to record daily discharge volumes to provide more representative estimates during the commissioning stage of the system.

5.4 Post-Development MECP Water Taking Permit

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering will be more than 50 m³/day, an application for a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

Based on the dewatering estimate of approximately 5 m³/day (rounded) per single dwelling, a water-taking permit will not be required for the post construction dewatering program of each unit.

6 Environmental Impact

6.1 Surface Water Features

There are few surface-water features onsite such as man-made drainage ditches and one (1) small pond southwest of the Site. The other nearest surface water features are the old Welland canal on the west, new Welland bypass canal on the east, as well as a wetland southeast of the Site. Lake Erie is located approximately 9 km south of the Site and Lake Ontario is approximately 25 km from the Site boundary to the north.

The main source of dewatering during the construction phase is anticipated to be stormwater, as such, no impacts on surface water features are expected during construction activities. The nature of the assumed drainage ditches needs to be assessed prior to backfilling these.

6.2 Groundwater Sources

Well Records from the MECP Water Well Record (WWR) Database were reviewed to determine the number of water supply wells present within a 500 m radius of the Site boundaries. One (1) onsite and four (4) offsite supply well records were identified. Given that no groundwater lowering is anticipated, no related impact is expected on the offsite water wells in the area. The status of the onsite well should be confirmed, and it should be decommissioned, if it is not being used.

6.3 Geotechnical Considerations

Under certain conditions, dewatering activities can cause settlements due to an increase in the effective stress in the dewatered soil.

A letter related to geotechnical issues (i.e. settlement) as it pertains to the Site is recommended to be completed under a separate cover.

6.4 Groundwater Quality

It is our understanding that the potential discharge from the dewatering system during the construction will be directed to the municipal sewer system. As such, the quality of groundwater discharge is required to conform to the Sewer Use By-Law.

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed the both Sanitary and Storm By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge into the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

An agreement to discharge to the sewers owned by the City of Welland will be required prior to discharging dewatering effluent. If no sewer system is available during the construction phase, the discharge water

shall be initially stored onsite and removed from the Site by a MCEP's licenced hauler to a designated disposal wastewater facility.

Also, the Environmental Site Assessment Report(s) should be reviewed for more information on the groundwater quality conditions at the Site.

6.5 Well Decommissioning

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

7 Conclusions and Recommendations

Based on the findings of the Hydrogeological Investigation, the following conclusions and recommendations are provided:

- When compared to the Niagara Sanitary and Storm (Combined) Sewer By-Law Limits the laboratory Certificate of Analysis (CofA) showed that all parameters were detected at concentrations below the Sanitary By-Law limits.
- Based on the highest dewatering estimate of approximately 305 m³/day, an online registration in the EASR will be required to facilitate the construction dewatering program.
- The preliminary long-term flow rate of the foundation sub-drain is estimated to be approximately 5 m³/day for a single dwelling. The exact volume discharged can be confirmed once the system is operational. It is recommended that once the sub-drain system is in place, a flow meter be installed at the sump(s) to record daily discharge volumes to provide more representative estimates during the commissioning stage of the system. Regular maintenance/cleaning of the sub-drain system is recommended to ensure its proper operation. A permit to take-water is not required for the post-construction phase.
- The construction dewatering volume is based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this investigation may significantly influence the discharge volumes.
- For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed the both Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge into the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer. The ESA findings should be considered to evaluate treatment options.
- An agreement to discharge to the sewers owned by the City of Welland will be required prior to discharging dewatering effluent.
- In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

The conclusions and recommendations provided above should be reviewed in conjunction with the entirety of the report. They assume that the present design concept described throughout the report will proceed to construction. Also, this report is solely intended for the construction and post-construction dewatering assessments. Any changes to the design concept may result in a modification to the recommendations provided in this report.

8 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusions and recommendations presented within this report reflect Site conditions existing at the time of the assessment. EXP must be contacted immediately if any unforeseen Site conditions are experienced during construction activities. This will allow EXP to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience/engineering profession. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of 555 Canal Bank Developments GP Inc. This report may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.

Sincerely,

EXP Services Inc.

Peyman Sayyah, M.Sc., P.Geo. Senior Hydrogeologist Environmental Services

OFE

CZ.

Francois Chartier M.Sc., P.Geo. Head of Hydrogeological Group Environmental Services

Reinhard Zapata, Ph.D., P.Geo. Senior Hydrogeologist Environmental Services

9 References

Cashman and Preene (2013). Groundwater Lowering in Construction, 2nd Edition.

Chapman, L.J. and Putnam, D.F. (2007). Physiography of Southern Ontario, 3rd Edition, Ontario Geological Survey.

J.P. Powers, A.B. Corwin, P.C. Schmall and W.E. Kaeck (2007). Construction Dewatering and Groundwater Control, Third Edition.

Ministry of Northern Development and Mines (May, 2012). OGS Earth. Retrieved from <u>http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth</u>.

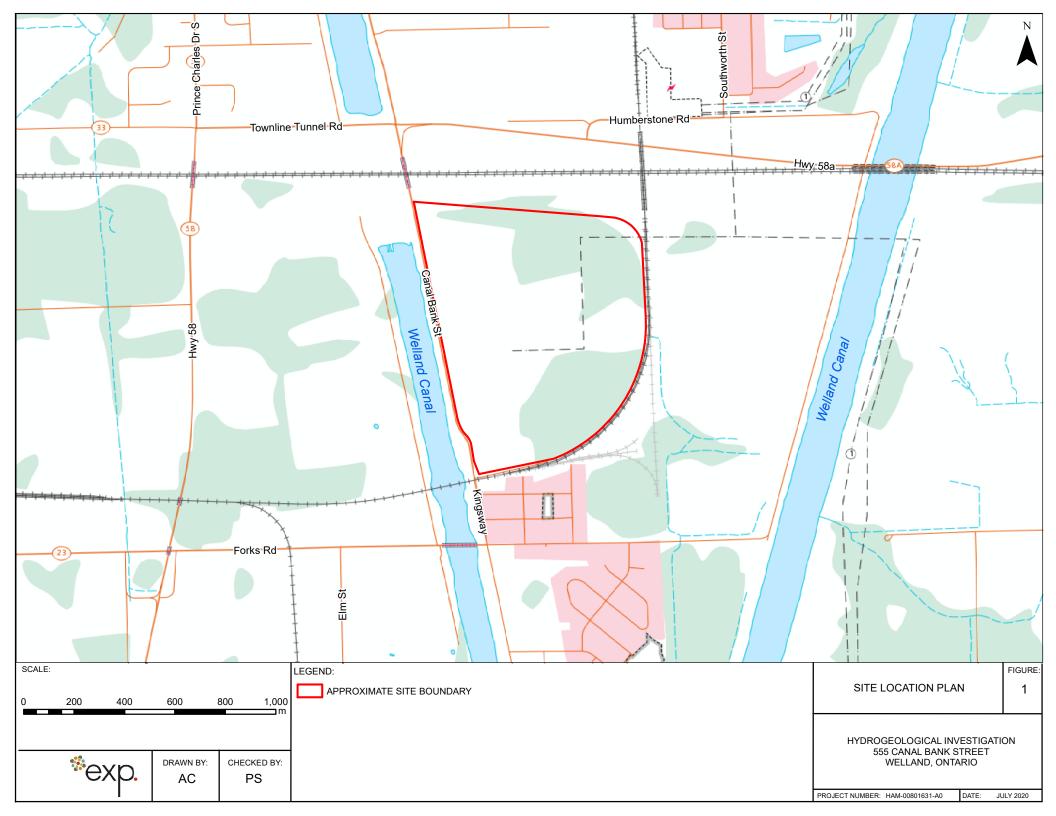
Percolation Test Methodology and Data Analysis, Toronto and Region Conservative Authorities (TRCA). accessed to the website: (<u>https://wiki.sustainabletechnologies.ca/wiki/Percolation_test</u>) dated April 2019.

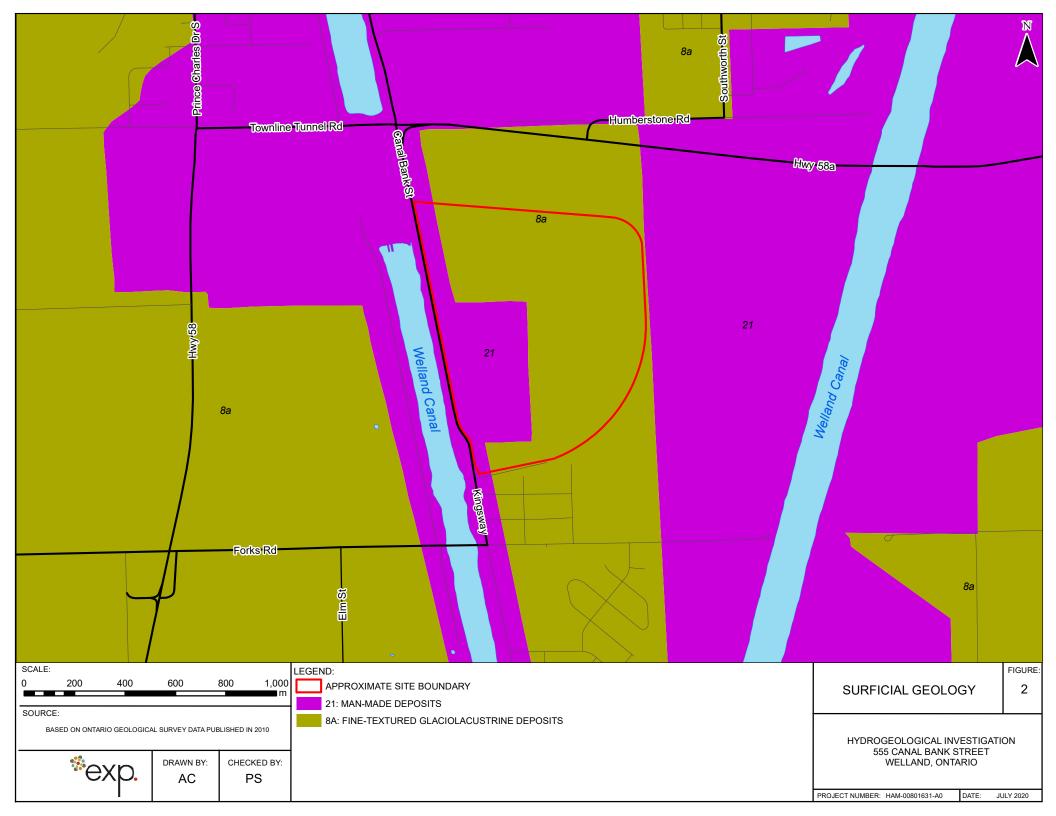
Reynolds, W.D. (2016). A unified Per Test-Well Permeameter methodology for absorption field investigations, Geoderma, V.264, Part A, 160-140 p.

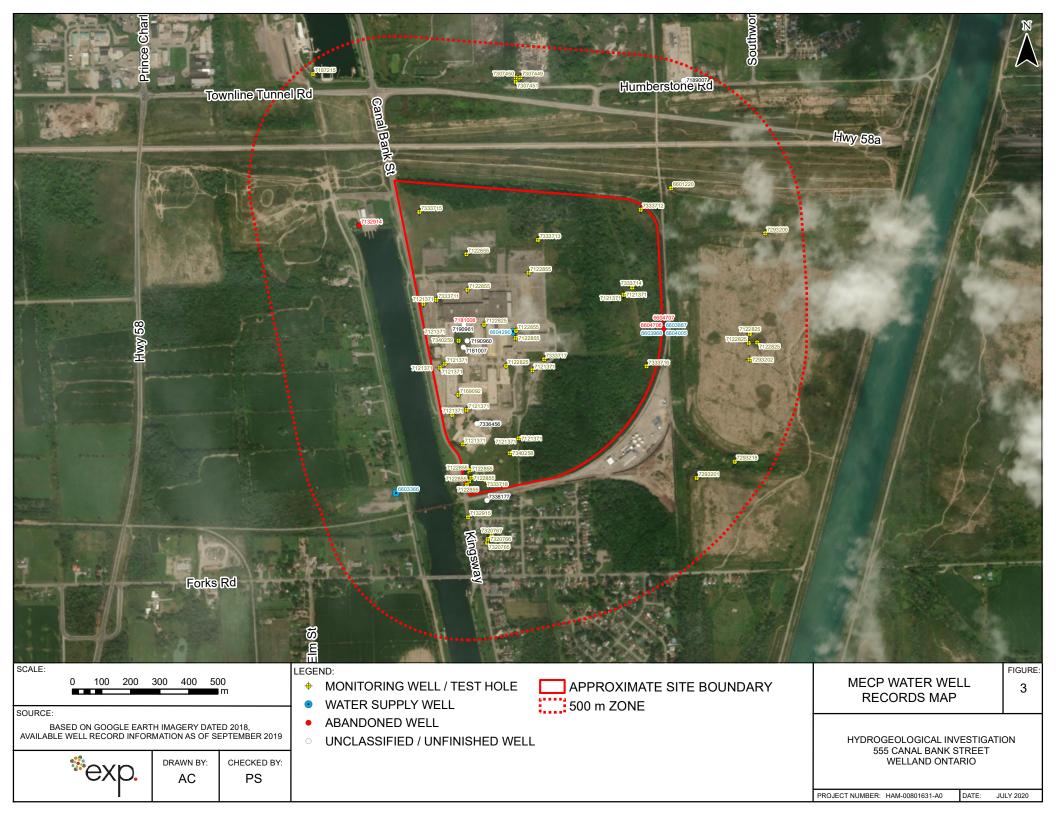
Reynolds, W.D., Galloway, K. and Radcliffe, D.E. (2015). "The relationship between perc time and fieldsaturated hydraulic conductivity for cylindrical test holes.", National Onsite Wastewater Recycling Association (NOWRA) 2015 Onsite Wastewater Mega-Conference, Virginia Beach, VA, USA, November 3-6, 2015.

EXP Services Inc. (2019). Preliminary Geotechnical Investigation, 555 Canal Bank Street, Welland, ON, prepared for Empire Communities.

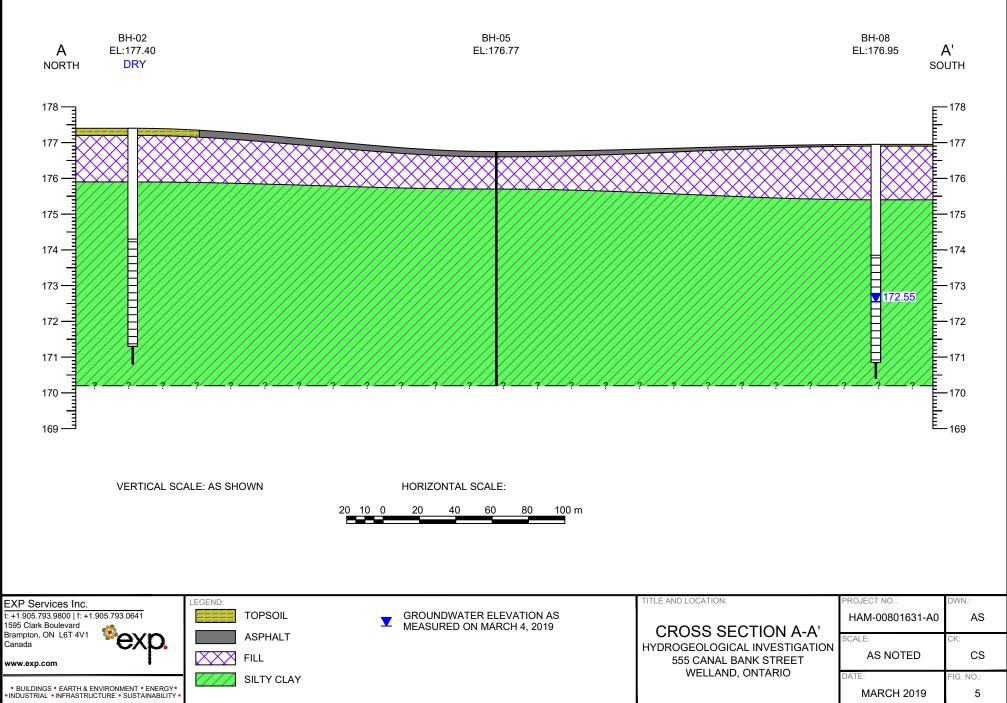
Armstrong (May 2020). Dain City West, Draft Plan of Subdivision, Draft Site Drawing.

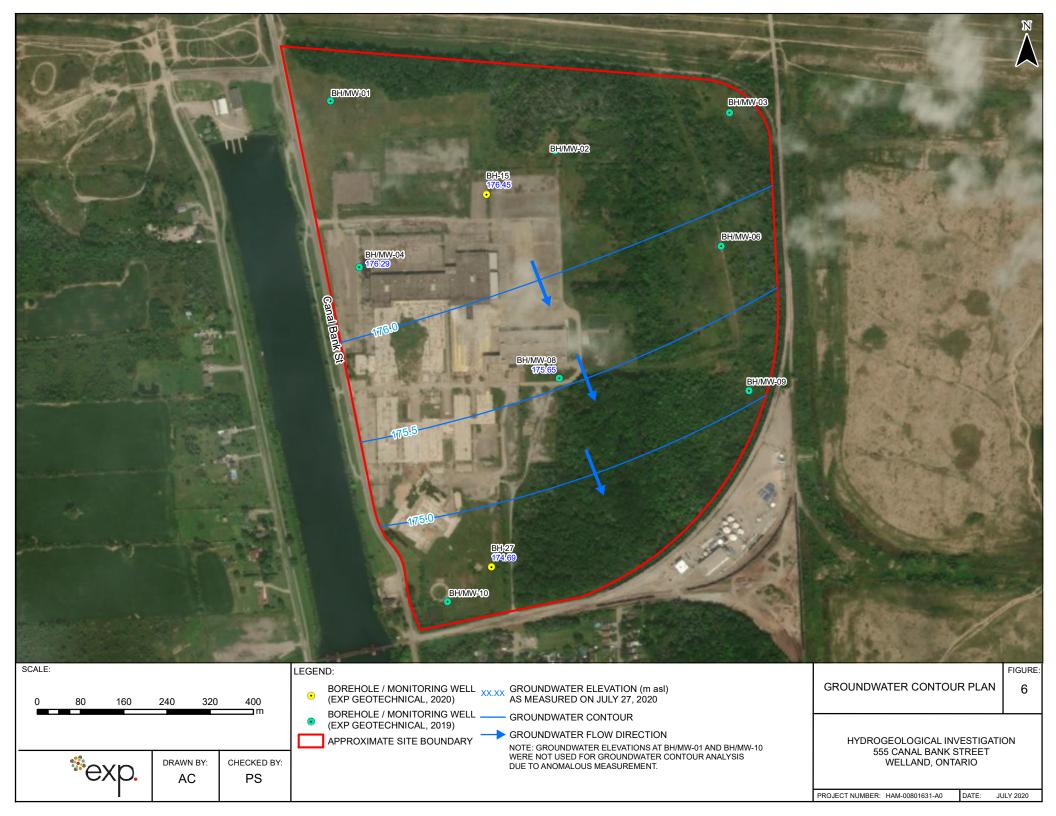

Upper Canada Consultants (July 2020). Site Alteration Plan, Former John Deere Site, City of Welland, Ontario, prepared for 555 Canal Bank Developments GP Inc.


EXP Services Inc. (August 10, 2020). Geotechnical Investigation, 555 Canal Bank Street, Welland, ON, prepared for 555 Canal Bank Developments GP Inc.

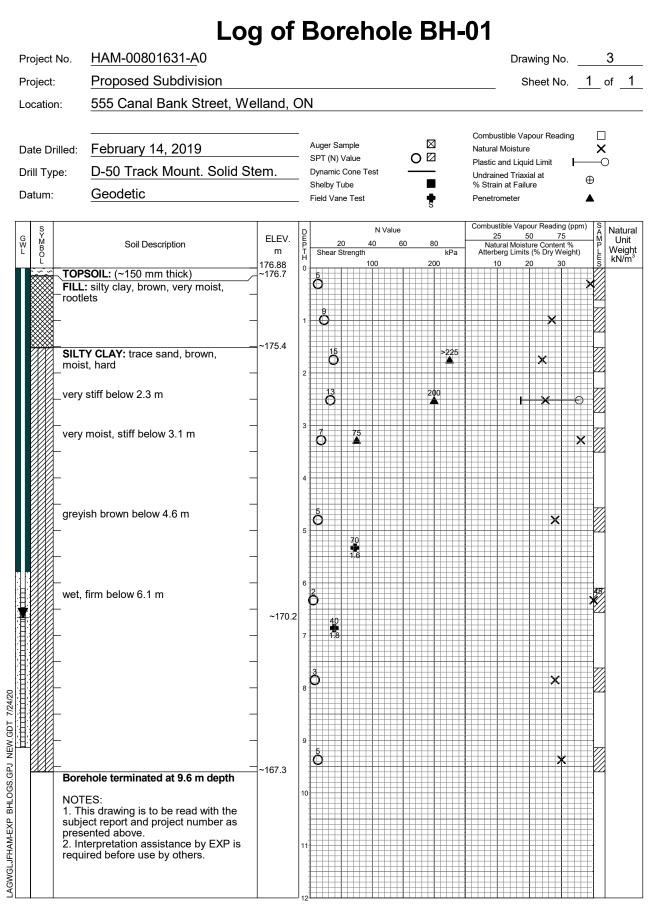


Figures



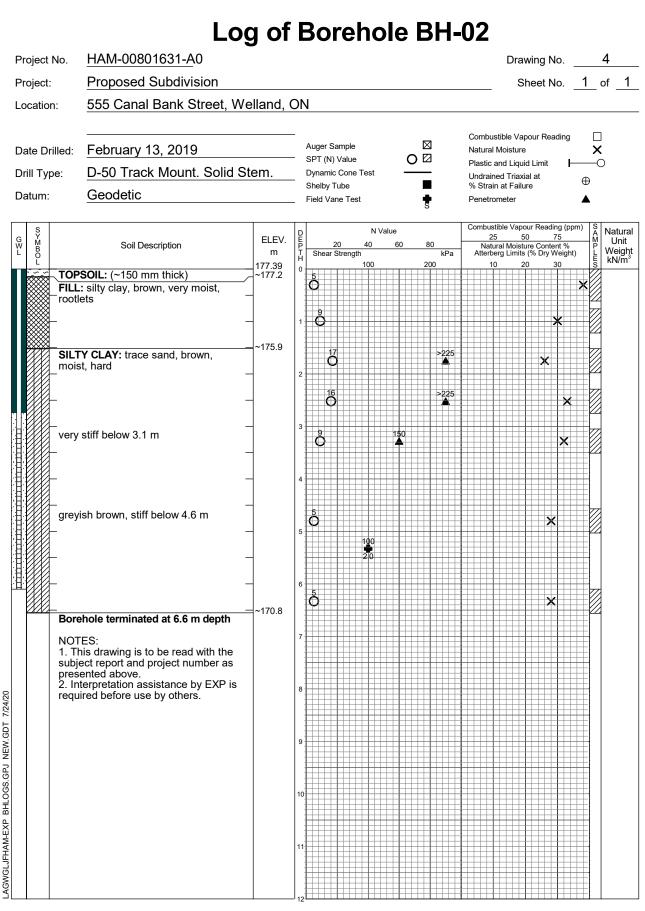


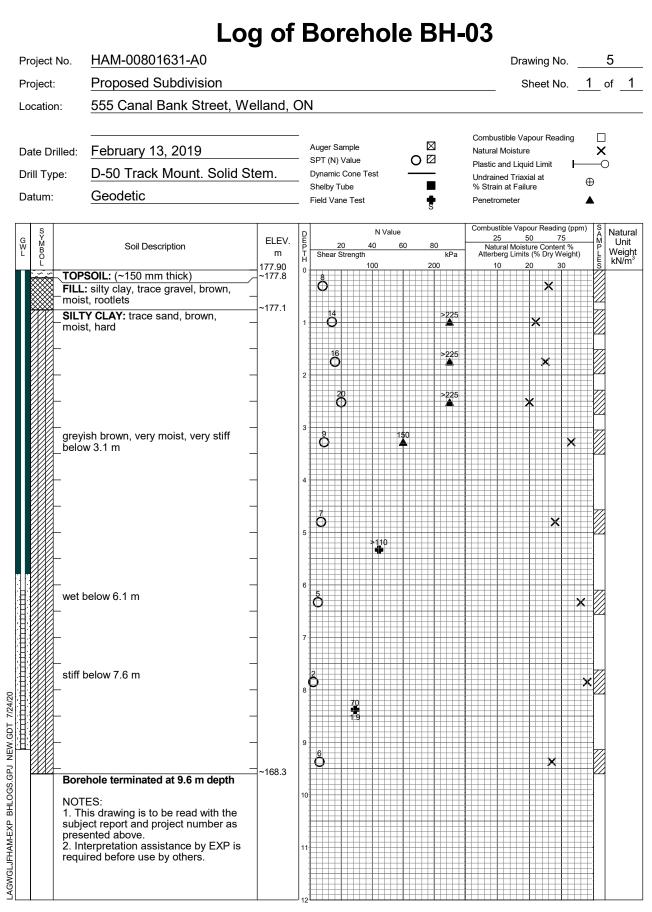
Appendix A: MECP WWR Summary Table



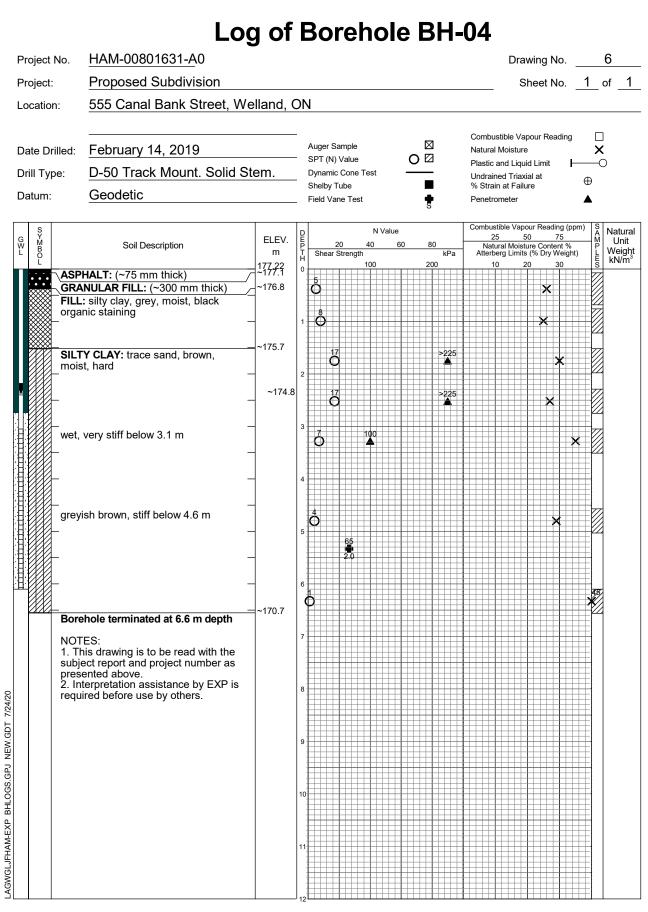
								On-Site								
DRE_HOLE_ID	WELL_ID	DATE	EAST83 NO	ORTH83	ELEVATION (m ASL)	LOCATION ACCURACY	STREET	СІТҮ	DISTANCE FROM SITE CENTROID (m)	CONSTRUCTION METHOD	WELL DEPTH (m bgs)	WATER FOUND (m BGS)	CASING DIAMETER (cm)	1st USE	2nd USE	FINAL STATUS
10463887	6604290	1/15/1998	643037 4	757277	175.6	UTM very unreliable			75		19.8	19.2	12.7	Domestic		Water Supply
1002422539	7122825	4/21/2009	642937 4	757302	175.1	margin of error : 30 m - 100 m	555 CANAL RD.	Welland	168		5.4		5.2	Monitoring		Other Status
1002422539	7122825	4/21/2009	643012 4	757160	175.1	margin of error : 10 - 30 m	555 CANAL RD.	Welland	175		5.4		5.2	Monitoring		Other Status
1002037786	7121371	2/17/2009	643416 4	757405	179.0	margin of error : 30 m - 100 m	555 CANAL ROAD	Welland	325		10.0		5.2	Monitoring and Test Hole		Test Hole
1002037786	7121371	2/17/2009	642802 4	757167	179.0	margin of error : 10 - 30 m	555 CANAL ROAD	Welland	335		10.0		5.2	Monitoring and Test Hole		Test Hole
1002037786	7121371	2/17/2009	642864 4	756890	179.0	margin of error : 10 - 30 m	555 CANAL ROAD	Welland	483		10.0		5.2	Monitoring and Test Hole		Test Hole
1002037786	7121371	2/17/2009	642827 4	756991	179.0	margin of error : 10 - 30 m	555 CANAL ROAD	Welland	422		10.0		5.2	Monitoring and Test Hole		Test Hole
1002037786	7121371	2/17/2009	642785 4	757154	179.0	margin of error : 10 - 30 m	555 CANAL ROAD	Welland	356		10.0		5.2	Monitoring and Test Hole		Test Hole
1002037786	7121371	2/17/2009	642728 4	757374	179.0	margin of error : 10 - 30 m	555 CANAL ROAD	Welland	383		10.0		5.2	Monitoring and Test Hole		Test Hole
1002037786	7121371	2/17/2009	643103 4	757145	179.0	margin of error : 10 - 30 m	555 CANAL ROAD	Welland	164		10.0		5.2	Monitoring and Test Hole		Test Hole
1002037786	7121371	2/17/2009	643416 4	757405	179.0	margin of error : 10 - 30 m	555 CANAL ROAD	Welland	325		10.0		5.2	Monitoring and Test Hole		Test Hole
1002037786	7121371	2/17/2009	642877 4	757008	179.0	margin of error : 10 - 30 m	555 CANAL ROAD	Welland	377		10.0		5.2	Monitoring and Test Hole		Test Hole
1002037786	7121371	2/17/2009	643056 4	756911	179.0	margin of error : 10 - 30 m	555 CANAL ROAD	Welland	401		10.0		5.2	Monitoring and Test Hole		Test Hole
1003570552	7169092	7/28/2011	642848 4	757061	175.4	margin of error : 10 - 30 m	555 CANAL BANK RD.	Welland	357		4.6		5.0	Not Used		Test Hole
1003782163	7181007	4/4/2012	642866 4	757224	175.3	margin of error : 30 m - 100 m	555 CANAL BANK RD	Welland	254							Other Status
1003782178	7181008	2/8/2012	642868 4	757302	174.9	margin of error : 30 m - 100 m	555 CANAL BANK RD	Welland	237							Abandoned-Ot
.003227812	7121371	2/17/2009	643056 4	756911	175.3	margin of error : 10 - 30 m	555 CANAL ROAD	Welland	401		10.0		5.2	Monitoring and Test Hole		Test Hole
1002422629	7122855	4/26/2009	642886 4	756797	178.4	margin of error : 10 - 30 m	555 CANAL RD	Welland	557		5.5		5.2	Monitoring		
1002422629	7122855	4/26/2009	642889 4	756801	178.4	margin of error : 10 - 30 m	555 CANAL RD	Welland	552		5.5		5.2	Monitoring		
1002422629	7122855	4/26/2009	642892 4	756775	178.4	margin of error : 10 - 30 m	555 CANAL RD	Welland	575		5.5		5.2	Monitoring		
1002422629	7122855	4/26/2009	642885 4	756763	178.4	margin of error : 10 - 30 m	555 CANAL RD	Welland	588		5.5		5.2	Monitoring		
1002422629	7122855	4/26/2009	642878 4	756751	178.4	margin of error : 10 - 30 m	555 CANAL RD	Welland	602		5.5		5.2	Monitoring		
1002422629	7122855	4/26/2009	643047 4	757281	178.4	margin of error : 10 - 30 m	555 CANAL RD	Welland	64		5.5		5.2	Monitoring		
1002422629	7122855	4/26/2009	643046 4	757256	178.4	margin of error : 10 - 30 m	555 CANAL RD	Welland	79		5.5		5.2	Monitoring		
1002422629	7122855	4/26/2009	642879 4	757422	178.4	margin of error : 10 - 30 m	555 CANAL RD	Welland	253		5.5		5.2	Monitoring		
1002422629	7122855	4/26/2009	642876 4	757544	178.4	margin of error : 10 - 30 m	555 CANAL RD	Welland	329		5.5		5.2	Monitoring		
1002422629	7122855	4/26/2009	643089 4	757480	178.4	margin of error : 10 - 30 m	555 CANAL RD	Welland	172		5.5		5.2	Monitoring		
007465738	7333713	2/14/2019	643121 4	757593		margin of error : 30 m - 100 m	555 CANAL BANK ST	Welland	285		6.1			Monitoring		Observation W
007465747	7333716	2/14/2019	643495 4	757159		margin of error : 30 m - 100 m	555 CANAL BANK ST	Welland	418		9.1			Monitoring		Observation W
007607815	7340258	7/2/2019	643025 4	756860		margin of error : 30 m - 100 m	555 Canal Bank Street	Welland	456		6.1	4.6		Monitoring and Test Hole		Monitoring and Te:
007607818	7340259	7/2/2019	642849 4	757247		margin of error : 30 m - 100 m	555 Canal Bank Street	Welland	264		6.1	4.9		Monitoring and Test Hole		Monitoring and Te
007465732	7333711	2/14/2019	642773 4	757388		margin of error : 30 m - 100 m	555 Canal Bark Street	Welland	342		6.1			Monitoring		Monitoring and Te
007465735			643475 4			margin of error : 30 m - 100 m	555 Canal Bank Street	Welland	537		9.1			Monitoring		Monitoring and Te
007465741			643446 4			margin of error : 30 m - 100 m	555 Canal Bank Street	Welland	362		6.1			Monitoring		Monitoring and Te
007465744			642714 4			margin of error : 100 m - 300 m	555 Canal Bank Street	Welland	546		9.1			Monitoring		Monitoring and Te
007498223			643143 4			margin of error : 30 m - 100 m	555 Canal Bank Street	Welland	131		6.1			Monitoring		Monitoring and Te
007498226			642941 4			margin of error : 30 m - 100 m	555 Canal Bank Street	Welland	566		9.1			Monitoring		Monitoring and Te
1004199222	7190960	1 1	642879 4		175.2	margin of error : 30 m - 100 m			235							
1004199266	7190961	2/8/2012		757302	174.9	margin of error : 30 m - 100 m			237							
.007499497		1 - 1	642912 4			margin of error : 30 m - 100 m			398							
		5, 25, 2015						Off-Site								

1060254 660326 01/17/98 045.37 17.2 margin of error: 100 m- 300 m 663 66.0 36.0 36.0 Not Used Test Hole 1064284 660385 101/1/198 452.5 17.7.8 UTM very unreliable 450 12.0 88.12.7 Domestic Water Supply 1064384 660385 101/1/198 453.5 47.72 17.8 UTM very unreliable 450 12.9 16.0 12.0 Domestic Water Supply 1064385 660470 1/17.00 453.5 47.727 17.8 UTM very unreliable 460 1.0 1.0 1.0 Water Supply 1064210 660470 1/17.00 453.5 47.727 17.8 Approximate location: margin of error: 11m- 3 in 48 1.0 Livestock Abandoned-Cuality 10042135 17.225.5 47.11.000 483.8 47.721 1.7.1 margin of error: 11m- 3 in 48 5.4 5.2 Monitoring Other Status 100421353 17.225.5 47.1000	BORE_HOLE_ID	WELL_ID	DATE	EAST83	NORTH83	ELEVATION (m ASL)	LOCATION ACCURACY	STREET	СІТҮ	DISTANCE FROM SITE CENTROID (m)	CONSTRUCTION METHOD	WELL DEPTH (m bgs)	WATER FOUND (m BGS)	DIAMETER (cm)	1st USE	2nd USE	FINAL STATUS
Index 44 660388 11/1/1298 64355 477.28 177.8 UTW very unreliable 560 12.0 18.0 12.0 Domestic Water supply 1064502 660306 11/17030 64355 475287 17.8 Approximate location: margin of error: 11 m·3 km 480 5.2 Domestic Water supply 10642159 660470 1/17030 64355 475287 17.8 Approximate location: margin of error: 10·3 0m 555 CANAL RD. Welland 744 5.4 5.2 Monitoring Other Status 100421259 712285 4/21000 64850 175724 17.3 margin of error: 10·3 0m 555 CANAL RD. Welland 746 5.4 5.2 Monitoring Other Status 100421259 712285 4/21000 64850 175724 17.3 margin of error: 10·3 0m S55 CANAL RD. Welland 746 5.4 5.2 Monitoring Other Status 100277272 712328 8/71020 64350 177.4 margin of error: 30 m·100 m CANAL ST. <td>10460954</td> <td>6601220</td> <td>12/22/1967</td> <td>643579</td> <td>4757772</td> <td>175.2</td> <td>margin of error : 100 m - 300 m</td> <td></td> <td></td> <td>663</td> <td></td> <td>46.0</td> <td>36.0</td> <td>30.5</td> <td>Not Used</td> <td></td> <td>Test Hole</td>	10460954	6601220	12/22/1967	643579	4757772	175.2	margin of error : 100 m - 300 m			663		46.0	36.0	30.5	Not Used		Test Hole
1043555 640398 11/2/19/190 64355 477.28 177.8 UM wery unreliable 450 25.9 14.0 15.2 Donestic Water sumply 10542189 664076 11/1700 64355 475787 177.8 Approximate location: margin of error: 11m - 3 km	10462981	6603366	10/11/1978	642635	4756723	174.7	margin of error : 30 m - 100 m			751		25.9	25.3	17.8	Industrial		Water Supply
1043602 643553 475,298 17.7.8 UN very unrelable 450 259 14.0 15.2 Densite Water Supply 10542190 664070 1/17/203 64353 475278 17.7.8 Approximate location: margin of error: 11m - 3 lm 555 CANAL RD. Welland 74 5.4 5.2 Monitoring Other Status 10042233 712282 471/200 64355 475727 17.5 margin of error: 10 - 30 m 555 CANAL RD. Welland 74 5.4 5.2 Monitoring Other Status 10042233 712282 471/200 64355 4757247 17.5 margin of error: 10 - 30 m 555 CANAL RD. Welland 74 5.4 5.2 Monitoring Other Status 100277277 7132314 87/7000 64355 475743 17.4 margin of error: 10 - 30 m CANAL ST. Welland 746 5.2 Monitoring Monitoring Monitoring of the Status 100277277 7132314 87/7000 64258 475564 17.4 margin	10463484	6603887	10/14/1989	643555	4757287	177.8	UTM very unreliable			450		14.0	13.7	12.7	Domestic		Water Supply
1054/21896404706 $1/17/2003$ 643553 4757287 17.8 Approximate location: margin of error: 1 km - 3 km4481054/21896604707 $1/17/2003$ 643553 4757287 17.8 Approximate location: margin of error: 1 km - 3 km448LivestockAbandoned-Quality10024225397122825 $4/21/2009$ 643873 4757287 17.8 margin of error: 1 km - 3 km4485.45.2MonitoringOther Status10024225397122825 $4/21/2009$ 643875 4757241 175.1 margin of error: 1 km - 3 kmWelland7735.45.2MonitoringOther Status10024725397122825 $4/21/2009$ 64387 475741 175.1 margin of error: 1 km - 3 kmS55 CANAL RD.Welland7735.45.2MonitoringOther Status1002777277132918 $8/7/2009$ 64258 475743 174.1 margin of error: 3 0m - 100 mCANAL RD.Welland77691Text HoleAbandoned-Quality10041557647182977178.1margin of error: 3 0m - 100 mCANAL ST.WELLAND7664.6MonitoringObservation Wells10041557647182977178.1Margin of error: 3 0m - 100 m285 FORKS ROAD EASTWelland77612.2Text HoleMonitoringMonitoring and Text Hole1006713627729301 $6/23/2017$ 64369 475574 180.1margin of error: 3 0m - 100 m285 FORKS ROAD EASTWelland78413.7 <td></td> <td>6603968</td> <td>11/29/1990</td> <td>643555</td> <td>4757287</td> <td></td> <td>UTM very unreliable</td> <td></td> <td></td> <td>450</td> <td></td> <td></td> <td>8.8</td> <td>12.7</td> <td>Domestic</td> <td></td> <td>Water Supply</td>		6603968	11/29/1990	643555	4757287		UTM very unreliable			450			8.8	12.7	Domestic		Water Supply
10542196604701/17/203643557475247475474754748LivestockAbandoned-Quality1002422537122854/21/20084384715.1margin of error: 10-3 0m555 CANAL RD.Welland7435.45.2MonitoringOther Status1002425537122854/21/200643857572417.5margin of error: 10-3 0m555 CANAL RD.Welland7465.45.2MonitoringOther Status100271275713241643057572417.4margin of error: 10-3 0m555 CANAL RD.Welland7665.45.2MonitoringOther Status1002717277132948/710086432756417.4margin of error: 10-3 0mCANAL ST.Welland7664.95.1Test HoleMonitoringAbandoned-Ouler1002172757132948/710264324758517.5margin of error: 10-3 0mCANAL ST.Welland764.95.1Test HoleMonitoringMonitoring100415576715747741246432754517.5margin of error: 30 m- 100 m285 FORK SROAD EASTWelland76413.7Test HoleMonitoringMonitoring Monitoring Meritoria Hole1006113677293206/21/21764364757418.1419.1Test HoleMonitoring Monitoring Meritoria Hole1006713677293206/21/21764364757418.1419.1Test HoleMonitoring Monitoring Hole10067136	10463602	6604005	6/15/1991	643555	4757287	177.8	UTM very unreliable			450		25.9	14.0	15.2	Domestic		Water Supply
100242253 712203 4/21/2009 ##### ######### 17.1 margin of error: 10 - 30 m 555 CANAL RD Welland 773 5.4 5.2 Monitoring Other Status 100242253 712282 4/21/2009 64387 5.774 17.5.1 margin of error: 10 - 30 m 555 CANAL RD. Welland 773 5.4 5.2 Monitoring Other Status 100242253 712282 4/21/200 64385 4757.20 17.5.1 margin of error: 10 - 30 m 555 CANAL RD. Welland 746 5.4 5.2 Monitoring Other Status 100277727 712325 8/7/200 6428 47564 17.4 margin of error: 30 m 100 m CANAL ST. WELLAND 76 4.6 Monitoring Observation Wells 100415576 718715 5/30/2012 6/39.22 4758143 180.0 margin of error: 30 m 100 m 285 FORKS ROAD EAST Welland 75 12.2 Test Hole Monitoring Monitoring and Test Hole 1006713627 7293201 6/3/2017 6/3/804	10542189	6604706	1/17/2003	643553	4757287	177.8	Approximate location: margin of error : 1 km - 3 km								Livestock		Abandoned-Quality
100242253 1/21/200 6/37.5 1/5.1 margin of error: 10 - 30 m 555 CANAL RD. Welland 7/73 5.4 5.2 Monitoring Other Status 100222253 712285 4/21/200 6/38.5 4757.01 175.1 margin of error: 10 - 30 m 555 CANAL RD. Welland 7/6 5.4 5.2 Monitoring Other Status 100277727 713251 8/7/200 6/28.2 475640 174.9 margin of error: 10 - 30 m CANAL ST. VELLAND 705 4.9 5.1 Test Hole Monitoring and Test Hole Test Hole Monitoring and Test Hole Test Hole Monitoring and Test	10542190		1/17/2003	643553	4757287		Approximate location: margin of error : 1 km - 3 km			448					Livestock		Abandoned-Quality
100242253 1/21/20 6/38.0 77270 17.51 margin of error: 10 - 30 m 555 CANAL RD. Welland 746 5.4 5.2 Monitoring Other Status 100277727 7132915 8/7/200 64258 47561 17.4 margin of error: 30 m 100 m CANAL ST. Welland 646 - - - - - Abandoned-Other - - Abandoned-Other - Abandoned-Other - - Abandoned-Other - - Abandoned-Other - Abandoned-Other - - Abandoned-Other - - Abandoned-Other - - - Abandoned-Other - - Abandoned-Other - - - - Abandore - - Ab			4/21/2009	######	########		margin of error : 10 - 30 m		Welland			5.4		5.2	Monitoring		Other Status
100277727 713291 8/7/2009 642508 4757643 174.9 margin of error: 10 - 30 m CANAL ST. WELLAND 705 4.9 5.1 Test Hole Abandoned-Other 100277727 7132918 8/7/2009 6428.28 75640 174.1 margin of error: 10 - 30 m HUMBERSTONE RD VELIAND 705 4.9 5.1 Test Hole Monitoring Monitoring and Test Hole Test Hole Test Hole Monitoring and Test Hole Test Hole Monitoring and Test Hole </td <td>1002422539</td> <td>7122825</td> <td>4/21/2009</td> <td>643875</td> <td>4757241</td> <td>175.1</td> <td>margin of error : 10 - 30 m</td> <td>555 CANAL RD.</td> <td>Welland</td> <td>773</td> <td></td> <td>5.4</td> <td></td> <td>5.2</td> <td>Monitoring</td> <td></td> <td>Other Status</td>	1002422539	7122825	4/21/2009	643875	4757241	175.1	margin of error : 10 - 30 m	555 CANAL RD.	Welland	773		5.4		5.2	Monitoring		Other Status
100277727 71329 8/7/2009 642882 475640 174.1 margin of error: 30 m-100 m CANAL ST. WELAND 705 4.9 5.1 Test Hole Test Hole 100415576 718271 5/30/2012 64284 475660 174.1 margin of error: 30 m-100 m HUMBERTONE RD + CLOBDURE ST Welland 1142 7.6 4.6 Monitoring Observation Wells 1006113657 718290 6/23/2017 64300 775765 17.9 margin of error: 30 m-100 m 285 FORKS ROAD EAST Welland 854 13.7 Test Hole Monitoring Monitoring and Test Hole 1006713678 7293201 6/23/2017 64384 475781 18.0 Test Hole Monitoring and	1002422539		4/21/2009	643850	4757270	175.1	margin of error : 10 - 30 m	555 CANAL RD.	Welland	746		5.4		5.2	Monitoring		Other Status
100415576 718725 5/30/2012 6/32 49 4758155 174.9 margin of error: 10 - 30 m HUMBERSTONE RD + COLBDURNE ST W Welland 1142 7.6 4.6 Monitoring Observation Wells 1004159558 718972 6/32/2017 6/3452 757814 180.0 margin of error: 30 m - 100 m 255 FORKS ROAD EAST Welland 56 13.7 Test Hole Monitoring Monitoring and Test Hole 1006713627 729320 6/32/2017 6/3467 475782 180.5 margin of error: 30 m - 100 m 285 FORKS ROAD EAST Welland 7.6 4.6 Monitoring Monitoring 1006713627 729320 6/32/2017 6/3467 475782 180.5 margin of error: 30 m - 100 m 285 FORKS ROAD EAST Welland 6.1 Test Hole Monitoring Monitoring and Test Hole 1006713627 729320 6/32/2017 6/3458 475813 Tost Hole Monitoring and Test Hole Monitoring an	1002777272	7132914	8/7/2009	642508	4757643	174.9	margin of error : 10 - 30 m										Abandoned-Other
1004198598 71/24/2012 643622 4758143 180.0 margin of error: 30 m-100 m 981 1006713624 7293200 6/23/2017 643602 4757616 179.5 margin of error: 30 m-100 m 285 FORKS ROAD EAST Welland 854 13.7 Test Hole Monitoring Monitoring and Test Hole 1006713624 7293201 6/32/2017 643849 4757812 189.5 margin of error: 30 m-100 m 285 FORKS ROAD EAST Welland 756 12.2 Test Hole Monitoring and Test Hole 1006713624 7293205 6/32/2017 643849 475782 189.5 margin of error: 30 m-100 m 285 FORKS ROAD EAST Welland 754 13.7 Test Hole Monitoring and Test Hole 1006713624 7293205 6/32/2017 643849 475812 margin of error: 30 m-100 m 285 FORKS ROAD EAST Welland 846 7.6 Test Hole Monitoring Monitoring and Test Hole 1007002397 730749 2/12/2018 643061 475813 margin of error: 30 m-100 m 405 HUMBERSTONE RD Welland 846 7.6 Test Hole Monitoring Monitoring and Test Hole Monitoring Monit	1002777275	7132915	8/7/2009	642882	4756640	174.1	margin of error : 30 m - 100 m	CANAL ST.	WELLAND	705		4.9		5.1	Test Hole		Test Hole
1005/1362 723200 6/23/2017 6/33.02 75756 17.5 margin of error: 30 m-100 m 225 FORKS ROAD EAST Welland 76 12.0 Test Hole Monitoring and Test Hole 1006/13627 723320 6/32/2017 64364 475714 18.0 margin of error: 30 m-100 m 225 FORKS ROAD EAST Welland 76 12.0 Test Hole Monitoring and Test Hole 1006/136267 729320 6/32/2017 64364 47512 18.0 margin of error: 30 m-100 m 225 FORKS ROAD EAST Welland 754 13.7 Test Hole Monitoring and Test Hole 1006/13678 729320 6/32/2017 64384 47518 58 Test Hole Monitoring and Test Hole 100700231 729320 6/32/2017 64384 4754 54 54 56 Test Hole Monitoring and Test Hole 100700231 703408 7/2/2018 6/32/2017 6/32401 475451 margin of error: 30 m-100 m 405 HUMBERSTONE RD Welland 846 7.6 Test Hole Monitoring and Test Hole	1004155764	7187215	5/30/2012	642349	4758165	174.9	margin of error : 10 - 30 m	HUMBERSTONE RD + COLBOURNE ST W	Welland	1142		7.6		4.6	Monitoring		Observation Wells
100671362 7293201 6/23/2017 6/3667 4756774 180.1 margin of error: 30 m - 100 m 285 FORKS ROAD EAST Welland 756 12.2 Test Hole Monitoring Monitoring 1006713628 729320 6/3/2017 6/3484 475182 189.5 margin of error: 30 m - 100 m 285 FORKS ROAD EAST Welland 754 13.7 Test Hole Monitoring Monitoring and Test Hole 1006713678 7293216 6/3/2017 6/3484 475182 189.5 margin of error: 30 m - 100 m 285 FORKS RADE EAST Welland 841 6.1 Test Hole Monitoring Monitoring and Test Hole 100700239 730740 2/12/2018 643061 475813 margin of error: 30 m - 100 m 405 HUMBERSTONE RD Welland 846 7.6 Test Hole Monitoring Monitoring and Test Hole 100702397 730740 2/12/2018 643045 475813 margin of error: 30 m - 100 m 405 HUMBERSTONE RD Welland 846 7.6 Test Hole Monitoring Monitoring Monitoring Monitoring Monitoring and Test Hole Monitoring Monitoring and Test Hole Mon	1004198598	7189007	7/24/2012	643622	4758143	180.0	margin of error : 30 m - 100 m			981							
1006713630 723320 6/32/017 6/33.94 9/75/125 19.5 margin of error: 30 m - 100 m 225 FORK SR DE EAST Welland 7.54 13.7 Test Hole Monitoring Monitoring and Test Hole 1006713678 723218 6/23/2017 6433.94 475.823 19.5 margin of error: 30 m - 100 m 225 FORK SR DD EAST Welland 6.1 Test Hole Monitoring Monitoring and Test Hole 100700234 730/44 7/12/2018 6430.64 475813 margin of error: 30 m - 100 m 405 HUMBERSTONE RD Welland 846 7.6 Test Hole Monitoring and Test Hole 1007002397 730/749 7/12/2018 6430.64 475813 margin of error: 30 m - 100 m 405 HUMBERSTONE RD Welland 846 7.6 Test Hole Monitoring and Test Hole 1007002397 730/749 7/12/2018 6430.54 475813 margin of error: 30 m - 100 m 405 HUMBERSTONE RD Welland 846 7.6 Test Hole Monitoring and Test Hole 100702977 73076 6/12/2018 6/25/2018 6/2	1006713624	7293200	6/23/2017	643902	4757616	179.5	margin of error : 30 m - 100 m	285 FORKS ROAD EAST	Welland	854		13.7			Test Hole	Monitoring	Monitoring and Test Hole
100671367 7293218 6/23/2017 643798 475631 178.0 margin of error: 30 m · 100 m 285 FORKS RADD EAST Welland 841 6.1 Test Hole Monitoring Monitoring and Test Hole 1007002391 730749 2/12/2018 64304 758153 margin of error: 30 m · 100 m 405 HUMBERSTONE RD Welland 846 7.6 Test Hole Monitoring Monitoring and Test Hole 1007002397 730745 2/12/2018 64304 4758133 margin of error: 30 m · 100 m 405 HUMBERSTONE RD Welland 846 7.6 Test Hole Monitoring and Test Hole 1007002397 730745 2/12/2018 643045 475813 margin of error: 30 m · 100 m 405 HUMBERSTONE RD Welland 842 7.6 Test Hole Monitoring and Test Hole 1007029777 730765 6/25/2018 643045 475631 margin of error: 30 m · 100 m 16 ERIE ST Welland 744 6.1 Monitoring Observation Wells 100729977 732076 6/25/2018 642947 4756578 margin	1006713627	7293201	6/23/2017	643667	4756774	180.1	margin of error : 30 m - 100 m	285 FORKS ROAD EAST	Welland	776		12.2			Test Hole	Monitoring	Monitoring and Test Hole
1007002391 730749 2/12/2018 643061 4758153 margin of error: 30 m - 100 m 405 HUMBERSTONE RD Welland 846 7.6 Test Hole Monitoring Monitoring and Test Hole 1007002397 730745 2/12/2018 643061 4758153 margin of error: 30 m - 100 m 405 HUMBERSTONE RD Welland 846 7.6 Test Hole Monitoring Monitoring and Test Hole 1007002397 730745 2/12/2018 643045 4758138 margin of error: 30 m - 100 m 405 HUMBERSTONE RD Welland 826 7.6 Test Hole Monitoring Monitoring and Test Hole 1007023977 730765 {/2/2/2018 643045 4758138 margin of error: 30 m - 100 m 106 FIELST Welland 822 7.6 Test Hole Monitoring Observation Wells 1007/29977 732076 {/2/2/2018 642947 475651 margin of error: 30 m - 100 m 16 ERLST Welland 74 6.1 Monitoring Observation Wells 1007/29977 732076 {/2/2/2018 642947 4756578<	1006713630	7293202	6/23/2017	643849	4757182	189.5	margin of error : 30 m - 100 m	285 FORKS RD. EAST	Welland	754		13.7			Test Hole	Monitoring	Monitoring and Test Hole
1007002397 7307450 2/12/2018 643046 4758153 margin of error: 30 m - 100 m 405 HUMBERSTONE RD Welland 846 7.6 Test Hole Monitoring Monitoring and Test Hole 1007002397 7307451 2/12/2018 643046 4758138 margin of error: 30 m - 100 m 405 HUMBERSTONE RD Welland 832 7.6 Test Hole Monitoring Monitoring and Test Hole 1007029977 732076 6/25/2018 642947 4756551 margin of error: 30 m - 100 m 16 ERLE ST Welland 74 6.1 Monitoring Observation Wells 1007299777 732076 6/25/2018 642949 4756555 margin of error: 30 m - 100 m 16 ERLE ST Welland 760 6.1 Monitoring Observation Wells 100729977 732076 6/25/2018 642949 4756555 margin of error: 30 m - 100 m 16 ERLE ST Welland 760 6.1 Monitoring Observation Wells 100729977 732076 6/25/2018 642963 4756578 margin of error: 30 m - 100 m 16 ER	1006713678	7293218	6/23/2017	643798	4756831	178.0	margin of error : 30 m - 100 m	285 FORKS RAOD EAST	Welland	841		6.1			Test Hole	Monitoring	Monitoring and Test Hole
1007002397 7307451 2/12/2018 643045 4758138 margin of error: 30 m - 100 m 405 HUMBERSTONE RD Welland 832 7.6 Test Hole Monitoring Monitoring Observation Wells 1007299778 7320765 (2/2/2018 642947 475651 margin of error: 30 m - 100 m 16 ERIE ST Welland 7.4 6.1 Monitoring Observation Wells 1007299776 7320765 (2/2/2018 642947 4756555 margin of error: 30 m - 100 m 16 ERIE ST Welland 7.6 Color Monitoring Observation Wells 1007299776 7320765 (2/2/2018 642947 4756558 margin of error: 30 m - 100 m 16 ERIE ST Welland 7.6 Color Monitoring Observation Wells 1007299776 7320765 (2/2/2018 642963 475678 margin of error: 30 m - 100 m 16 ERIE ST Welland 7.4 6.1 Monitoring Observation Wells	1007002391	7307449	2/12/2018	643061	4758153		margin of error : 30 m - 100 m	405 HUMBERSTONE RD	Welland	846		7.6			Test Hole	Monitoring	Monitoring and Test Hole
1007299773 7320765 6/25/2018 642947 4756551 margin of error: 30 m - 100 m 16 ERE ST Welland 774 6.1 Monitoring Observation Wells 1007299779 7320765 6/25/2018 642949 4756565 margin of error: 30 m - 100 m 16 ERE ST Welland 760 6.1 Monitoring Observation Wells 1007299779 732076 6/25/2018 62563 4756578 margin of error: 30 m - 100 m 16 ERE ST Welland 744 6.1 Monitoring Observation Wells	1007002394	7307450	2/12/2018	643046	4758153		margin of error : 30 m - 100 m	405 HUMBERSTONE RD	Welland	846		7.6			Test Hole	Monitoring	Monitoring and Test Hole
1007299776 7320766 6/25/2018 642949 4756565 margin of error : 30 m - 100 m 16 ERIE ST Welland 760 6.1 Monitoring Observation Wells 1007299779 7320767 6/25/2018 642963 4756578 margin of error : 30 m - 100 m 16 ERIE ST Welland 744 6.1 Monitoring Observation Wells	1007002397	7307451	2/12/2018	643045	4758138		margin of error : 30 m - 100 m	405 HUMBERSTONE RD	Welland	832		7.6			Test Hole	Monitoring	Monitoring and Test Hole
1007299779 7320767 6/25/2018 642963 4756578 margin of error : 30 m - 100 m 16 ERIE ST Welland 744 6.1 Monitoring Observation Wells	1007299773	7320765	6/25/2018	642947	4756551		margin of error : 30 m - 100 m	16 ERIE ST	Welland	774		6.1			Monitoring		Observation Wells
	1007299776	7320766	6/25/2018	642949	4756565		margin of error : 30 m - 100 m	16 ERIE ST	Welland	760		6.1			Monitoring		Observation Wells
1007562145 7338177 5/24/2019 642947 4756697 margin of error : 30 m - 100 m 632	1007299779	7320767	6/25/2018	642963	4756578		margin of error : 30 m - 100 m	16 ERIE ST	Welland	744		6.1			Monitoring		Observation Wells
	1007562145	7338177	5/24/2019	642947	4756697		margin of error : 30 m - 100 m			632							

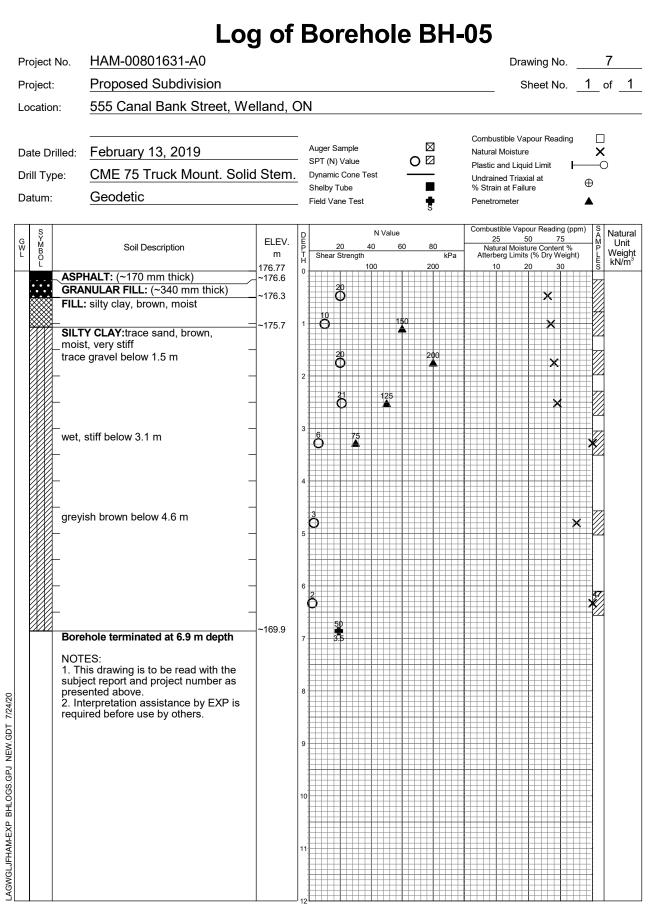

Appendix B: Borehole Logs


*exp.

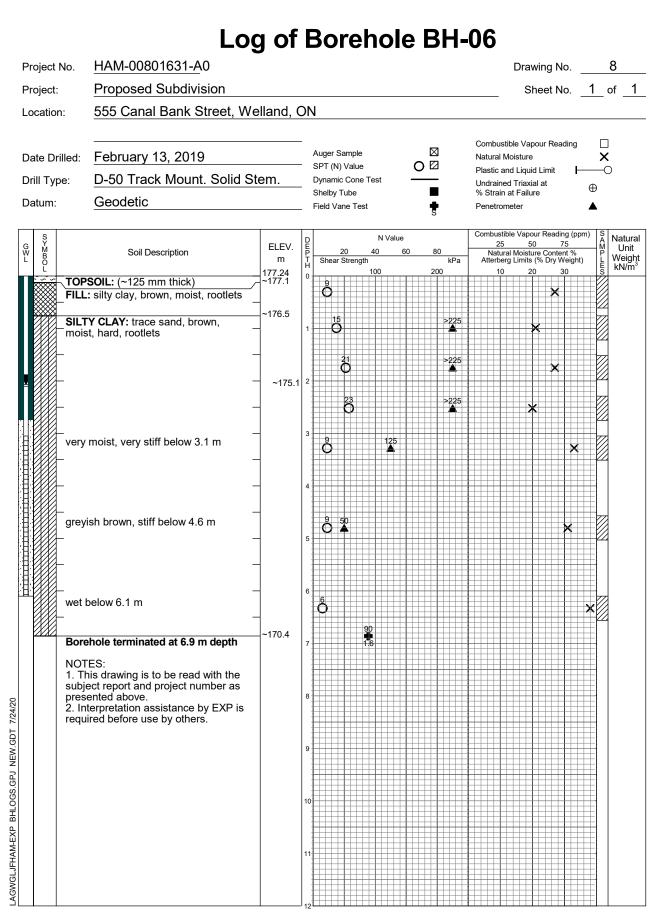
Time	Water Level	Depth to Cave
on completion	no free water	<u>(m)</u> 9.6
February 19, 2019	4.4	N/A
March 4, 2019	6.7	N/A



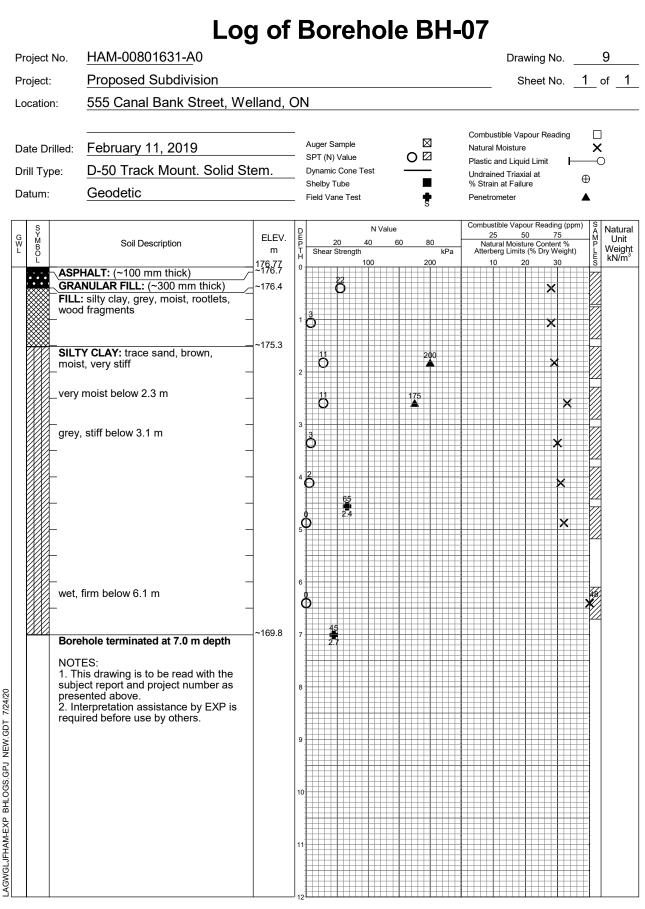
	Water	Depth to
Time	Level	Cave
	(m)	(m)
on completion	no free water	6.6
February 19, 2019	no free water	N/A
March 4, 2019	no free water	N/A


*exp.

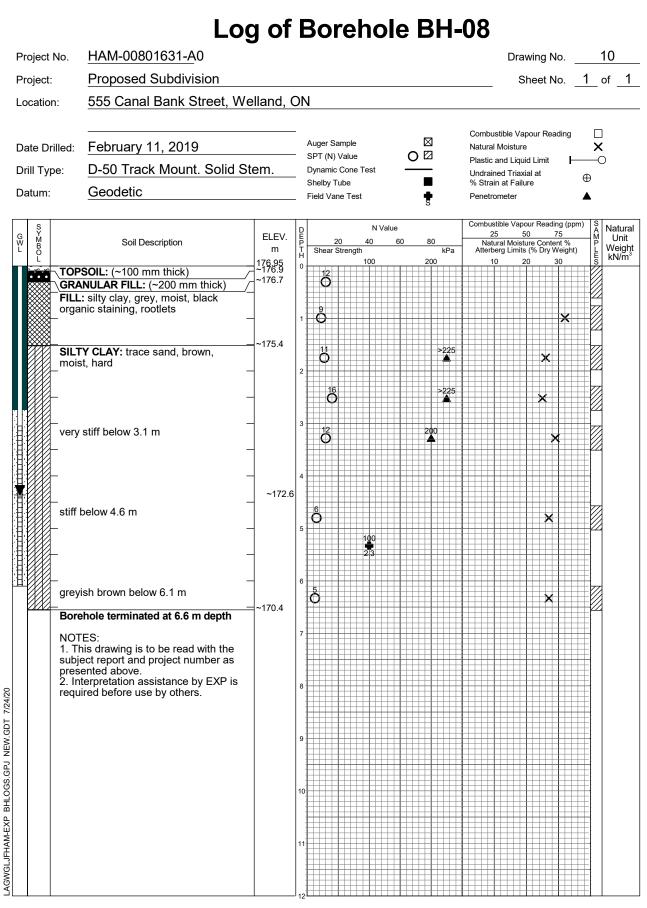
	Water	Depth to
Time	Level	Ċave
	(m)	(m)
on completion	no free water	9.6
February 19, 2019	no free water	N/A
March 4, 2019	no free water	N/A


*exp.

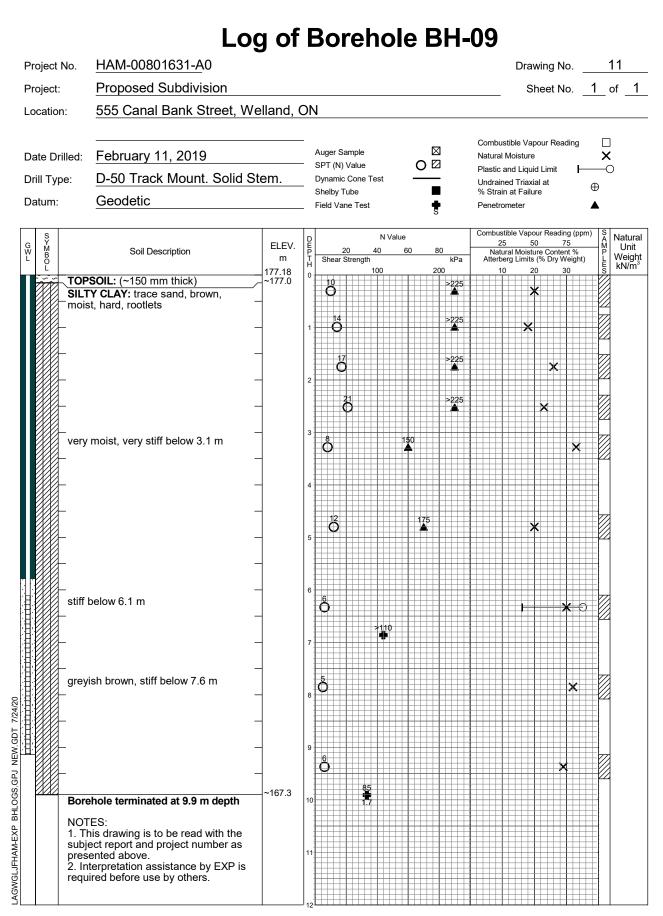
Time	Water Level (m)	Depth to Cave (m)
on completion	5.3	6.6
February 19, 2019	4.6	N/A
March 4, 2019	2.4	N/A



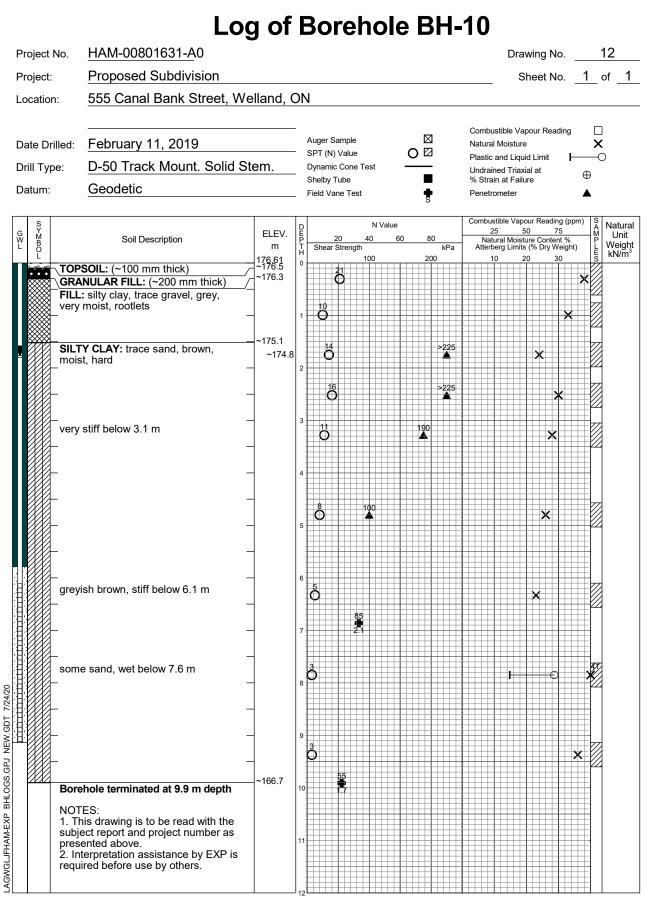
Time	Water Level (m)	Depth to Cave (m)
on completion	4.Ó	6.6



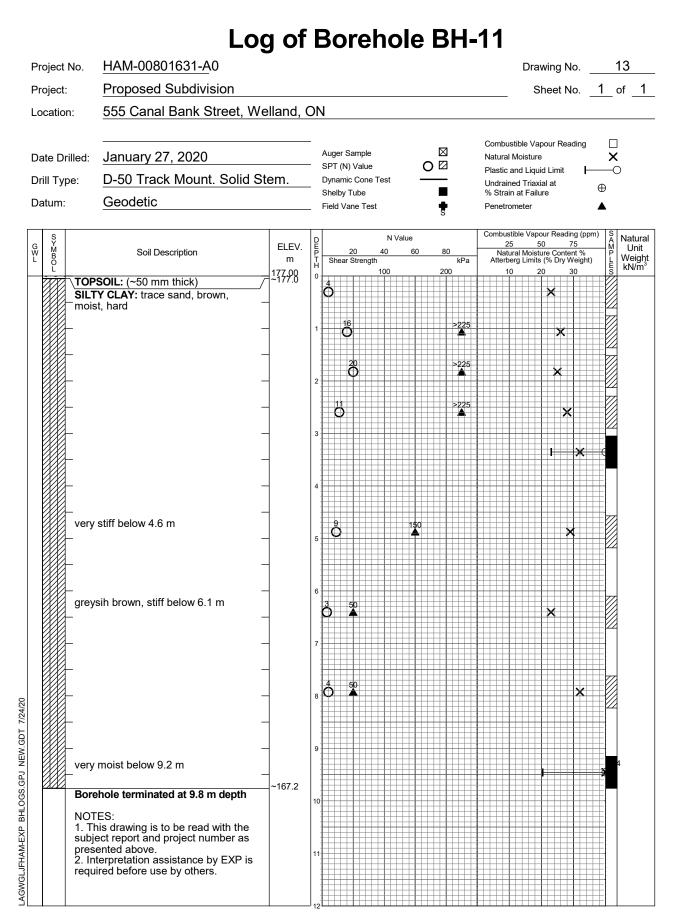
Level (m)	Depth to Cave (m)
free water 2.6 2.1	6.6 N/A N/A
•	(m) free water 2.6



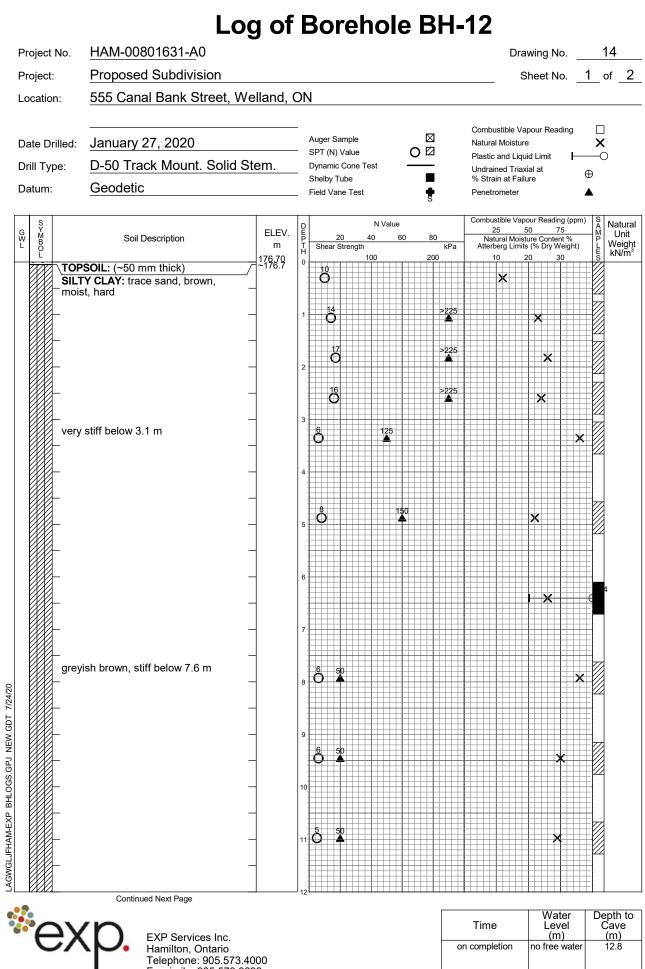
Time	Water Level (m)	Depth to Cave (m)
on completion	4.6 [°]	6.6



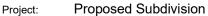
Time	Water Level (m)	Depth to Cave (m)
on completion February 19, 2019	no free water 5.4	6.6 N/A
March 4, 2019	4.4	N/A



0



Time	Water Level (m)	Depth to Cave (m)
on completion	8.2	9.6
February 19, 2019	1.9	N/A
March 4, 2019	1.8	N/A


Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	9.8

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	12.8

Log of Borehole BH-12

Project No. HAM-00801631-A0

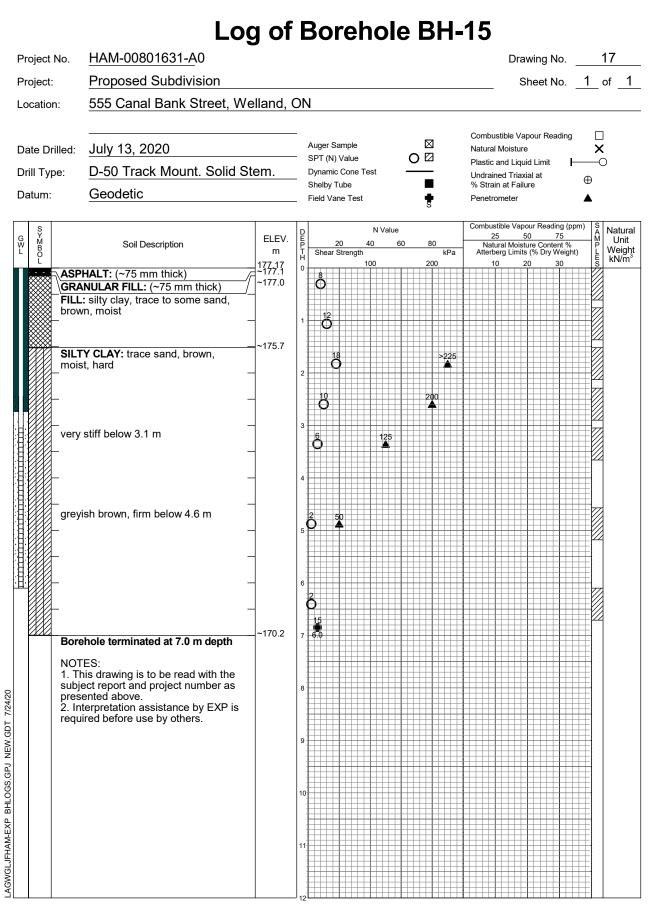
Drawing No. 14

Sheet No. 2 of 2

G N B O L	Soil Description	ELEV.	DED			20	4	N V	alue 6		80	<u>ן</u>	-	Co	mbus 25	tible \ 5	Vapo 50	our Re 0	adin 7	g (ppm 5 t % eight)) SAMPLES	Natur Unit
L B L		m 164.70	DEPTH		hear	Streng	gth	00		0	20	kF	°a	A	Atterbe		imits 20		ry W		LES	Weigl kN/m
		104.70	12																			
		_		Ħ													H		×	-0		
	Borehole terminated at 12.8 m depth	~163.9	13																			
	NOTES																					
	1. This drawing is to be read with the																					
	presented above.		14	Ħ																		
	 This drawing is to be read with the subject report and project number as presented above. Interpretation assistance by EXP is required before use by others. 																					
	,			Ħ																		
			15																			
				Ħ																		
			16	Ħ																		
				Ħ										Ŧ								
			17	Ħ																		
			1																			
			18																			
				Ħ																	Ħ	
			19																			
				Ħ																		
			20																			
				Ħ																		
			21	Ħ																		
				Ħ																		
			22																			
				Ħ																		
				+																		
			23	Ħ			++-															
				Ħ																		
			24																			
			24	Ħ										Ŧ							ŧ	
				Ħ																		
			25																			
				Ħ																		
			26																			
		1		Ħ									H				H				\pm	

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	12.8

Project No.	HAM-00801631-A0						rawing No.	
Project:	Proposed Subdivision						Sheet No.	<u> </u>
Location:	555 Canal Bank Street, We	elland,	ON					
Date Drilled:	July 16, 2020		-	Auger Sample			Vapour Reading ure	□ ×
Drill Type:	D-50 Track Mount. Solid St	em.	SPT (N) Va		0 🛛	Plastic and Li Undrained Tri	•	C
Datum:	Geodetic		Shelby Tub Field Vane		s S	% Strain at Fa		⊕
G Y W B U O	Soil Description	ELEV. m	D E P 20 T Shear Stre		0 80 kPa	25	apour Reading (ppr 50 75 visture Content % nits (% Dry Weight)	A A
	HALT: (~75 mm thick)	177.26 ~177.2 ~177.0		100	200	10	20 30	LS
SILT	VULAR FILL: (~150 mm thick) / (CLAY: trace sand, brown,	-						
moist	, hard _	-	1 Ö		>225			
	-	-	13		>225			
	-	-	2 O					
	-	-	12 O		>225			
		-	3					
very s	stiff below 3.1 m -	_	Ô	100				
	_		4					
	_							
greyis	sh brown, firm below 4.6 m		2 50 O ▲					
	-		5					
	-							
	-	-	6					
	-	-	43					
Borel	nole terminated at 7.0 m depth	~170.3	7					
NOTE 1. Th	ES: is drawing is to be read with the							
subje	is drawing is to be read with the ct report and project number as inted above.		8					
2. Int	red before use by others.							
			9					
			10					
AIM-EX			11					
LAGWGLUFTAMEAR								
			12					
	5		12			Time	Water Level	De
[®] ex	EXP Services Inc. Hamilton, Ontario					on completion	(m) no free wate	
	Telephone: 905.573.40 Facsimile: 905.573.969	000						



Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	6.7

Location: 555 Canal Bank Street, Welland, ON Date Drillet: July 14, 2020 Drill Type: D-50 Track Mount. Solid Stem. Datum: Geodetic The solid Communication assessment as the solid stem. Datum: Geodetic Sol Description Sol	Project No. Project:	HAM-00801631-A0 Proposed Subdivision				wing No	16 1 of
Date Drilled: July 14, 2020 Auger Sample Distant Module X Drill Type: D-50 Track Mount. Solid Stem. Dramic Core Test Dramic Core Test <t< th=""><th>-</th><th></th><th>nd, ON</th><th></th><th></th><th></th><th></th></t<>	-		nd, ON				
Note: Soil Description ELEV. m P 20 40 60 80 ASPHALT: (~75 mm thick) -177.3 <th>Drill Type:</th> <th>D-50 Track Mount. Solid Sterr</th> <th>SPT (N) Value Dynamic Cone Test Shelby Tube</th> <th></th> <th>Natural Moisture Plastic and Liqu Undrained Triax % Strain at Failu Penetrometer</th> <th>e nid Limit I−− cial at ure</th> <th>× ⊕ ▲</th>	Drill Type:	D-50 Track Mount. Solid Sterr	SPT (N) Value Dynamic Cone Test Shelby Tube		Natural Moisture Plastic and Liqu Undrained Triax % Strain at Failu Penetrometer	e nid Limit I−− cial at ure	× ⊕ ▲
Borehole terminated at 6.7 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.	ASF GR/ SIL moi	ANULAR FILL: (~200 mm thick) / ~1` TY CLAY: trace sand, brown, st, hard / stiff below 3.1 m	$\frac{1275}{7.3}$ 0 100 100 1 16 1 13 1 0 1 16 2 16 2 16 2 16 3 100	200			
	02,022,022,022,022,022,022,022,022,022,	ehole terminated at 6.7 m depth TES: 'his drawing is to be read with the ject report and project number as sented above	ê e e e e e e e e e e e e e e e e e e e				

Time	Water Level (m)	Depth to Cave (m)
on completion	6.4	6.7

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	6.7

Project No. Project:	HAM-00801631-A0 Proposed Subdivision				Drawing No. Sheet No.	
Location:	555 Canal Bank Street, W	elland, (N			Sheet No.
			-		Combustible Va	apour Reading
Date Drilled:	July 14, 2020		Auger Sample - SPT (N) Value	O ⊠	Natural Moisture Plastic and Ligu	e
Drill Type:	D-50 Track Mount. Solid S	tem.	Dynamic Cone Test Shelby Tube		Undrained Triax % Strain at Failu	vial at
Datum:	Geodetic		_ Field Vane Test	S	Penetrometer	
G S W B L O L	Soil Description	ELEV. m	D N V P 20 40 T Shear Strength 100	alue 60 80 kPa 200	Natural Moist Atterberg Limits	our Reading (ppm 50 75 ture Content % s (% Dry Weight) 20 30
FILL	NULAR FILL: (~125 mm thick) : silty clay, trace sand, brown, t, black organic staining	177.69 ~177.6				
- SILT mois	Y CLAY: trace sand, brown, st, hard	~176.8	1 Ö	200		
		_	2	>225		
		_	15 O	>225		
		_	3	>225		
		_	¹²			
		-	4			
grey	ish brown, firm below 4.6 m	-	3 25 O A			
			30			
		_	6			
		~171.0	ð			
Bore	ehole terminated at 6.7 m depth	_~171.0	7			
NOT 1. Tł subj	nis drawing is to be read with the ect report and project number as					
pres	ented above. terpretation assistance by EXP is ired before use by others.		8			
2	,					
NEW.			9			
LAGWGLJFHAM-EXP BHLOGS.GPJ NEW.GDT			10			
XP BHL						
HAM-E			11			
SWGLJF						
			12			
[%] ех	EXP Services Inc.				Time	Water Level (m)
	Hamilton, Ontario Telephone: 905.573.4	000		0	n completion	no free water

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	6.7

Project No.	HAM-00801631-A0				Dra	wing No.	19		
Project:	Proposed Subdivision				s	Sheet No.	<u>1</u> of		
Location:	555 Canal Bank Street, We	555 Canal Bank Street, Welland, ON							
Date Drilled:	July 13, 2020				Combustible Va Natural Moisture		□ ×		
Drill Type:	D-50 Track Mount. Solid S	tem.	- SPT (N) Value O	2	Plastic and Liqu Undrained Triax		—0		
Datum:	Geodetic		Shelby Tube Field Vane Test	S	% Strain at Failu Penetrometer		⊕		
G W BO	Soil Description	ELEV.	D N Value P 20 40 60 T Shear Strength	80	Natural Moist	our Reading (ppr 50 75 ture Content % s (% Dry Weight)			
FILL	silty clay, occasional rootlets,	177.16 ~176.9		200		20 30	ĒI		
SILT	n, moist, Y CLAY: trace sand, brown, t, hard			>225					
			21 O	>225					
	greyish brown, firm below 3.1 m		8	>225					
greyi		-	³ 5 50 ▲						
		_	4						
		-	5						
			6						
	hole terminated at 6.7 m depth	~170.5	7						
prese	his drawing is to be read with the ect report and project number as		8						
	ierpretation assistance by EXP is ired before use by others.								
			9						
			10						
			11						
*ex					Time	Water Level (m)	Dep Ca		
	Hamilton, Ontario Telephone: 905.573.4 Facsimile: 905.573.96			on	completion	no free water			

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	6.7

Location: 105 process organization Location: 505 Canal Bank Street, Welland, ON Date Dnilled: July 13, 2020 Dnill Type: D-50 Track Mount. Solid Stem. Datum: Geodetic Process of the series of the	Project No. Project:	HAM-00801631-A0 Proposed Subdivision				awing No Sheet No	20 1 of
Date Drilled: July 13, 2020 Auger Sample O D Drill Type: D-50 Track Mount. Solid Stem. Dramme Cone Test Shelty Tube Plastic and Liquid Lint Plastic and Liquid Lint Datum: Geodetic Field Vane Test Shelty Tube Plastic and Liquid Lint			d, ON				
Note Soil Description 23 50 75 50 ASPHALT: (~150 mm thick) -177.0 100 20 0 0 0 10 20 30 GRANULAR FILL: (~200 mm thick) -176.8 -176.8 100 20 10 20 30 Firm below 3.1 m -110 -110 -2258 -110 -110 -2258 -110 -110 -20 30 -110 -110 -20 30 -110 -110 -20 30 -110 -110 -20 30 -110 -20 30 -110 -20 30 -110 -20 30 -110 -20 30 -110 -20 30 -110 -20 -110 -20 30 -110 -20 -20 -110 -20	Drill Type:	D-50 Track Mount. Solid Stem	SPT (N) Value Dynamic Cone Test Shelby Tube		Natural Moistu Plastic and Liq Undrained Tria % Strain at Fai	re uid Limit 🔶 xial at	× 0
ASPHALT: (~150 mm thick) GRANULAR FILL: (~200 mm thick) SILTY CLAY: trace sand, brown, moist, hard - 176.8 - 176.8	G M B O	Soli Description	EV. D P 20 40 Shear Strength	60 80	25 Natural Mois	50 75 sture Content %	M
	GRA SILT mois	HALT: (~150 mm thick) NULAR FILL: (~200 mm thick) Y CLAY: trace sand, brown, st, hard below 3.1 m 		>225			

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	6.7

			Log	g of		В	Borel	nole	Bŀ	! -'	19						
P	roject	No.	HAM-00801631-A0	-								Dra	awing	No.		21	
Project: Proposed Subdivision												5	Sheet	No.	1	of	1
Lo	ocatio	n:	555 Canal Bank Street, We	elland,	10	Ν											
D	ate Di rill Tyj atum:		July 13, 2020 D-50 Track Mount. Solid St Geodetic	tem.		S D S	uger Sample PT (N) Value Dynamic Cone 1 Shelby Tube ield Vane Test	ēst ·			Combus Natural Plastic a Undrain % Strair Penetro	Moistur and Liq ed Tria n at Fai	re uid Lim xial at	-	× •		
G W L	SYMBOL		Soil Description	ELEV. m	DEP TH		20 Shear Strength	N Value 40 60		Pa	25	ral Mois erg Limi	50 ture Co ts (% Di	ading (ppr 75 ontent % ry Weight) 20	A	U We	tural Init eight I/m ³
		FILL and g orga	SOIL: (~100 mm thick) : silty clay, trace to some sand gravel, brown, moist, black nic staining		0 1 2 3 4		ර් 1 ර් ර්										
		SILT _brow _	Y CLAY: trace sand, greyish n, moist, hard -	-	5	5	ð			225							
			stiff below 6.1 m - hole terminated at 6.7 m depth	~172.8			Ö	150									
		NOT 1. Th subje prese 2. Int			8	8											

9

10

11

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	6.7

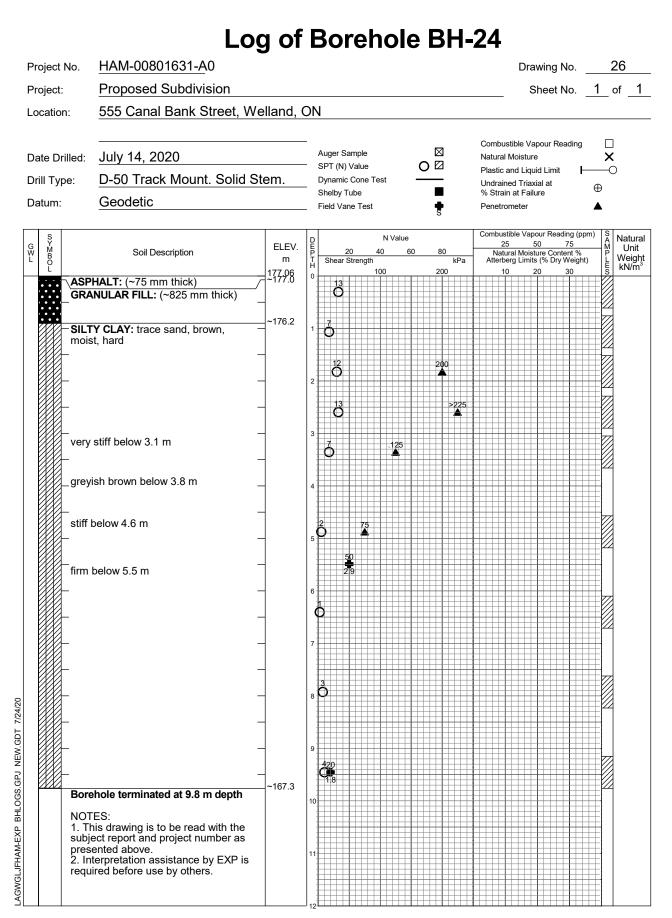
Project No.	HAM-00801631-A0					awing No.	
Project:	Proposed Subdivision				5	Sheet No.	1
Location:	555 Canal Bank Street, We	elland, (NC				
Date Drilled:	July 13, 2020		- Auger Sample	\boxtimes	Combustible Va Natural Moistur		⊑ ×
Drill Type:	D-50 Track Mount. Solid St	tem.	 SPT (N) Value Dynamic Cone Test 	0 🛛	Plastic and Liqu Undrained Tria:	uid Limit	
Datum:	Geodetic		Shelby Tube Field Vane Test	■ •	% Strain at Fail Penetrometer		⊕
G W B O	Soil Description	ELEV.	D N Value P 20 40 60 T Shear Strength	80	25	oour Reading (ppm 50 75 sture Content %	A
Ĺ	·	m 178,29 ∼178.2	T Shear Strength H 100	kPa 200		sture Content % ts (% Dry Weight) 20 30	
GRA	HALT: (~75 mm thick) NULAR FILL: (~100 mm thick) :silty clay, trace sand, moist, < organic staining	~178.1	Ö 1 Ö				
	-	_	ð				
	Y CLAY: trace sand, brown, t, hard	~176.0		>225			
	-	-	3 24 Ŏ	>225			
greyi	- - sh brown, stiff below 4.6 m	-	5 75				
firm	- below 5.5 m	-	50				
		~171.6	6 3				
	hole terminated at 6.7 m depth		7				
_1. Th subjection	Lo. is drawing is to be read with the ect report and project number as ented above. terpretation assistance by EXP is red before use by others.	_	° O				
	-	_	9				
BHLOGS.GPJ NEW.GDT	-	-	420 1.8 10				
			11				
LAGWGLJFHAM-EXP							
*ex	EXP Services Inc.				Time	Water Level (m)	
	Hamilton, Ontario Telephone: 905.573.40	000		C	n completion	no free water	

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	9.8

Project No.	HAM-00801631-A0				Dra	wing No.	2
Project:	Proposed Subdivision				S	Sheet No.	<u>1</u> o ^r
Location:	555 Canal Bank Street, W	/elland,	ON				
Date Drilled:	July 13, 2020		Auger Sample		Combustible Va Natural Moistur		□ X
Drill Type:	D-50 Track Mount. Solid S	Stem.	 SPT (N) Value Dynamic Cone Test 	0 🛛	Plastic and Liqu Undrained Triax		0
Datum:	Geodetic		Shelby Tube _ Field Vane Test	S S	% Strain at Fail Penetrometer	ure	⊕
S S W B O	Soil Description	ELEV.	E 20 40	/alue 60 80	25 S Natural Moist	oour Reading (ppm 50 75 ture Content %	A
Ĺ	HALT: (~75 mm thick)	m 177.65 ~177.6	0 17 100	kPa 200	-	s (% Dry Weight) 20 30	
FILL	NULAR FILL: (~100 mm thick) silty clay with granular seams	//~177.5	0				
and t	iopsoil inclusions, moist, black nic staining	A~176.8					
SILT	Y CLAY: trace sand, brown, t, hard						
	-, • •		16 O	>225			
		-	2				
		-		>225			
	stiff bolow 3.1 m	_	3				
very	stiff below 3.1 m		Ö	1\$0			
		1					
arevi	sh brown, firm below 4.6 m	-	6 50				
- g. e j.		_	5 0 4				
		1					
		-	15				
Bore	hole terminated at 7.0 m depth	~170.7	7				
NOT							
1. Th	is drawing is to be read with the ect report and project number as		8				
prese	ented above						
requi	terpretation assistance by EXP is ired before use by others.						
			9				
			10				
			11				
			12				Ŧ
					Time	Water Level (m)	De
ех	EXP Services Inc. Hamilton, Ontario	4000		C	on completion	6.4	
	Telephone: 905.573. Facsimile: 905.573.9	4000					

Time	Water Level (m)	Depth to Cave (m)
on completion	6.4	6.7

Project No.	HAM-00801631-A0				Dr	rawing No.	24
Project:	Proposed Subdivision					Sheet No1	1_of_1
Location:	555 Canal Bank Street, V	Velland,	N				
Date Drilled:	 July 14, 2020		- Auger Sample	\boxtimes	Combustible \ Natural Moistu	/apour Reading ure	□ ×
Drill Type:	D-50 Track Mount. Solid	Stem	 SPT (N) Value Dynamic Cone Test 		Plastic and Lic Undrained Tria		_0
Datum:	Geodetic		_ Shelby Tube _ Field Vane Test		% Strain at Fa	ailure	€
S			D N Val	S	Combustible Va	apour Reading (ppm) 50 75	S A Natur
G M W B L O L	Soil Description	ELEV. m	P 20 40 T Shear Strength 0 100	60 80 kPa 200	Natural Moi Atterberg Lim	isture Content % hits (% Dry Weight) 20 30	A Natur M Uni L Weig E kN/n
	HALT: (~75 mm thick) NULAR FILL: (~100 mm thick)	176.88 ~176.8 ~176.7	Ô				
SILT	Y CLAY: trace sand, brown, t, hard	_/					
		-		>225			
		_	15	>225			
		_	2				
stiff b	pelow 2.3 m	_					
arovi	ah braum firm balaw 2.0 m						
_greys	sh brown, firm below 3.8 m						
		-	2				
		_	5 O				
		_	1.3				
		_	6 O				
			ð				
Bore	hole terminated at 6.7 m depth	~170.2					
NOTI	ES:						
subje	is drawing is to be read with the ect report and project number as ented above.						
2. Int	erpretation assistance by EXP is red before use by others.		8				
			9				
			10				
			12				_
ех	'n				Time	Water Level	Depth Cave
EX	EXP Services Inc. Hamilton, Ontario				on completion	(m) no free water	<u>(m)</u> 6.7
	Telephone: 905.573 Facsimile: 905.573	.4000					



Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	6.7

Project No.	HAM-00801631-A0				Dra	awing No	25
Project:	Proposed Subdivision				5	Sheet No.	1_ of
Location:	555 Canal Bank Street, We	elland,	ON				
Date Drilled:	July 14, 2020		– Auger Sample		Combustible Va Natural Moistur		□ X
Drill Type:	D-50 Track Mount. Solid S	tem	 SPT (N) Value Dynamic Cone Test 	0 🛛	Plastic and Liq		0
Datum:	Geodetic		Shelby Tube Field Vane Test		Undrained Tria % Strain at Fai		⊕
		1		S	Penetrometer		
G Y W B L O L	Soil Description	ELEV. m 176.99	D N Valu P 20 40 T Shear Strength 100	ie <u>60 80</u> kPa 200	25 Natural Mois Atterberg Limit	20000000000000000000000000000000000000	
FILI orga	: silty clay, brown, moist, black anic staining	_					
SIL ⁻ moi	TY CLAY: trace sand, brown, st, hard	_~176.2 _		>225			
	-	_	2 1 2 0	>225			
_	-	-		>225			
very	stiff below 3.1 m		3 11 125				
	-		4				
are	rish brown, firm below 4.6 m	-	3 50				
- g. c.		_	5				
	-	-					
	-		6				
Bor	- ehole terminated at 6.7 m depth	~170.3					
NO ⁻ 1. T	FES: his drawing is to be read with the						
pres	his drawing is to be read with the ect report and project number as ented above. iterpretation assistance by EXP is		8				
requ	lired before use by others.						
			9				
			10				
2. Ir req			11				
			1 ₁₂			Water	Dept
°ex	EXP Services Inc.				Time	Level (m)	(n
e>	Hamilton, Ontario Telephone: 905.573.4 Facsimile: 905.573.96	000			on completion	no free wate	r 6.
	acsimile. 900.07 3.90						

Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	6.7

Time	Water Level (m)	Depth to Cave (m)
on completion	7.9 [°]	9.8

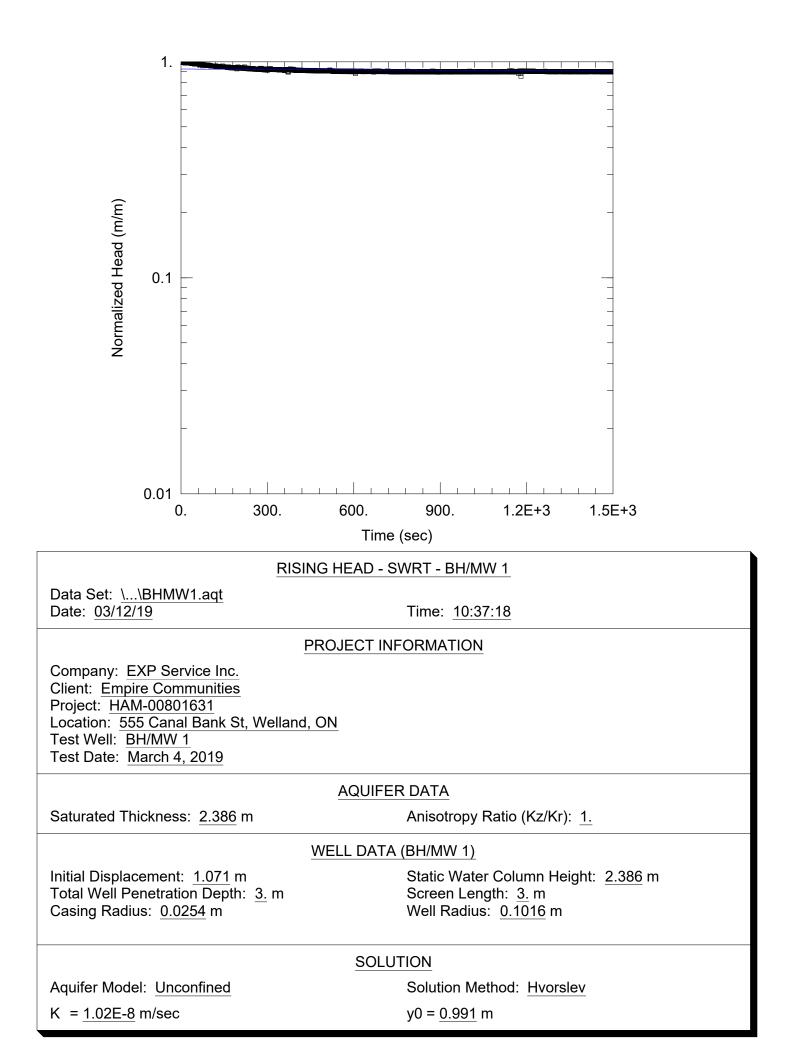
V Soil Description ELEV 177.23 Image: Constraint of the solution o	Project No.	HAM-00801631-A0					awing No	
Date Drilled: July 16, 2020 Drill Type: D-50 Track Mount. Solid Stem. Datum: Geodetic Datum: Geodetic TOPSOIL: C-150 mm thick) TOPSOIL: C-150 mm thick) TOPSOIL: C-150 mm thick) TOPSOIL: C-150 mm thick) TOPSOIL: C-160 mm thick) TOPSOIL: C-170 Track SillTY CLAY: trace sand and gravel, brown, molst C-170 S SillTY CLAY: trace sand and gravel, brown, molst C-170 S SillTY CLAY: trace sand and gravel, brown, molst C-170 S SillTY CLAY: trace sand, brown, molst C-170 S Topseoid to report heading to brown below 3.1 m C-170 S SillTY CLAY: trace sand, brown, molst C-170 S Topseoid to report heading to brown below 3.1 m C-170 S SillT below 4.6 m C-170 S Sill brown below 3.1 m C-170 S Sill to port topsoin for top or the topsoin the topsoin top or top o	Project:					5	Sheet No.	<u>1</u> of
Date Drilled: July 16, 2020 Drill Type: D-S0 Track Mount. Solid Stem. Datum: Geodetic Datum: Geodetic TOPSOIL: (-150 mm thick) Field Vane Test TOPSOIL: (-150 mm thick) Track Mount. TOPSOIL: (-150 mm thick) Track Fift: silv clay, trace sand and gravel, brown, most Track Geodetic Track SILTY CLAY: trace sand and gravel, brown below 3.1 m Track Geodetic terminated at 6.7 m doptin Track NottES: This drawing is to be read with the subject report and project number as 2. Thereptetion assistance by EXP is required before use by others. Track Particle assistance by EXP is required before use by others. Track Track Topsoil: Track by others. Track Track Difference Track Track Track Track Geodetic Track Track Track Track Track Track <t< td=""><td>Location:</td><td>555 Canal Bank Street, W</td><td>elland,</td><td>ON</td><td></td><td></td><td></td><td></td></t<>	Location:	555 Canal Bank Street, W	elland,	ON				
Drill Type: D-50 Track Mount. Solid Stem Datum: Geodetic Open Core Test Other Step Tube Solid Description ELEV. Image: Solid	Date Drilled:	July 16, 2020						
Datum: Geodetic Stelley Tube * Stelley Tube 90 Sol Description Field Vano Tox Preventionetic 17723 Sol Description -176.2 Preventionetic 18 Preventionetic Preventionetic Preventionetic 19 Sol Description -176.5 Preventionetic 19 Sol Description -176.5 Preventionetic 10 Preventionetic Preventionetic Preventionetic 10 Preventionetic Preventionetic Preventionetic 10 Preventionetic Preventionetic<	Drill Type:	-	tem.	. ,	012			0
Note: Soil Description ELEV Image: Soil Description					■ •	% Strain at Fail		⊕
L 0 TOPSOIL: (-150 m thick) 177.31 0 20 0 20 00 20 00 177.31 0 20 0 20 00 177.31 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 10 20 0 10	G Y GW M	Soil Description	ELEV.	D N Value		25	50 75	
FILL: sity clay, trace sand and gravel, brown, moist SILTY CLAY: trace sand, brown, moist Greyish brown below 3.1 m Greyish brown below 3.1 m Stiff below 4.6 m Stiff below 4.6 m Source and with the subject report and project number as presented above. 2. Intrapretation assistance by EXP is required before use by others. Prove the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. Subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. Subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. Subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. Subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. Subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. Subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. Subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. Subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.	L		177.23	H Shear Strength	kPa			
Shi trout. Take sand, brown, moist, hard greyish brown below 3.1 m stiff below 4.6 m 	FILL	silty clay, trace sand and	~~177.1	Ŏ				
greyish brown below 3.1 m greyish brown below 3.1 m stiff below 4.6 m Borehole terminated at 6.7 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.			~ 176.2	1 Ö				
greyish brown below 3.1 m greyish brown below 3.1 m stiff below 4.6 m - - - - - - - - - - - - -					200			
Greyish brown below 3.1 m Stiff below 4.6 m Stiff below 4.6 m Stiff below 4.6 m Stiff below 4.6 m Solution 1 and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.				13	>225			
greyish brown below 3.1 m stiff below 4.6 m 								
Borehole terminated at 6.7 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.	greyi	sh brown below 3.1 m			>225			
Borehole terminated at 6.7 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.								
Borehole terminated at 6.7 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.								
Borehole terminated at 6.7 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.	stiff t	pelow 4.6 m		2 50 • ●				
Porehole terminated at 6.7 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.				50				
Borehole terminated at 6.7 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.				6				
Borehole terminated at 6.7 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.				Ö.				
1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. 9 9 10 10 10 10 11 10 12 12	Bore	hole terminated at 6.7 m depth	~170.5	7				
presented above. 2. Interpretation assistance by EXP is required before use by others.	NOT 1. Th	ES: is drawing is to be read with the						
	prese	ented above		8				
12-	requi	ired before use by others.						
12				9				
12								
12				10				
12								
12	HAM-E			11				
12								
EXP Services Inc. Time Water Level C Hamilton, Ontario on completion no free water				12				+
EXP Services Inc. Hamilton, Ontario		'n				Time	Level	Dep
	EX	EXP Services Inc. Hamilton, Ontario Telephone: 905.573.4	000		0	on completion		(<u>r</u> r 6

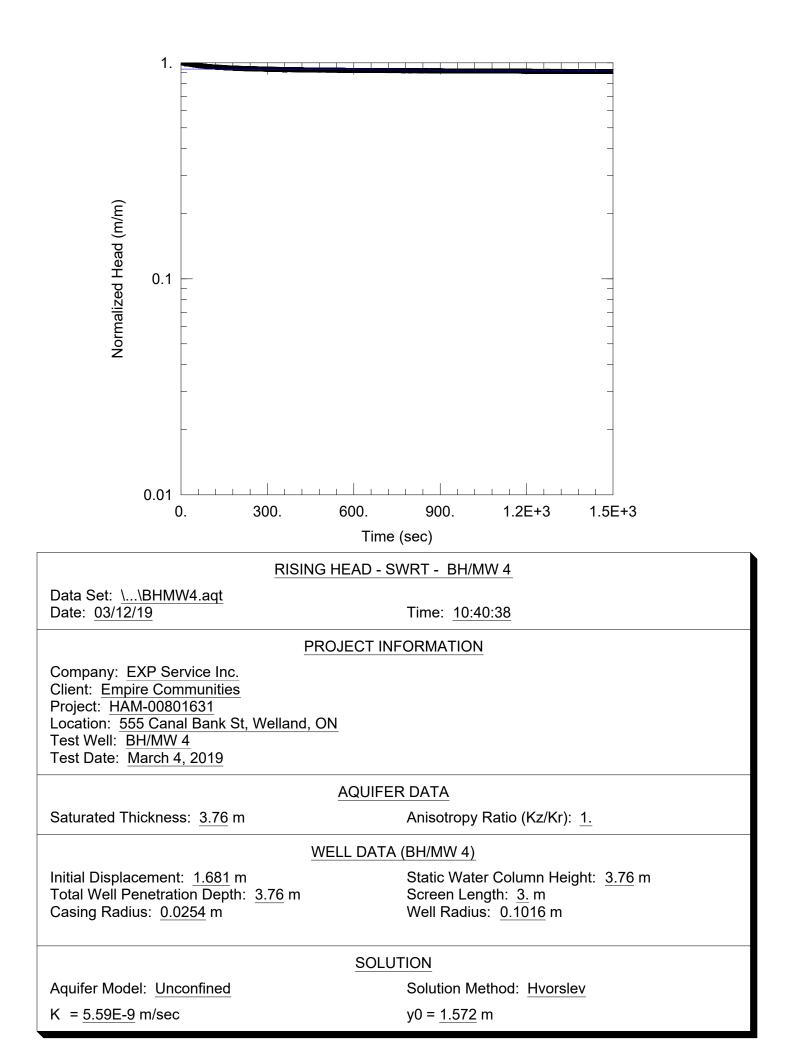
	14/1	
Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	6.7

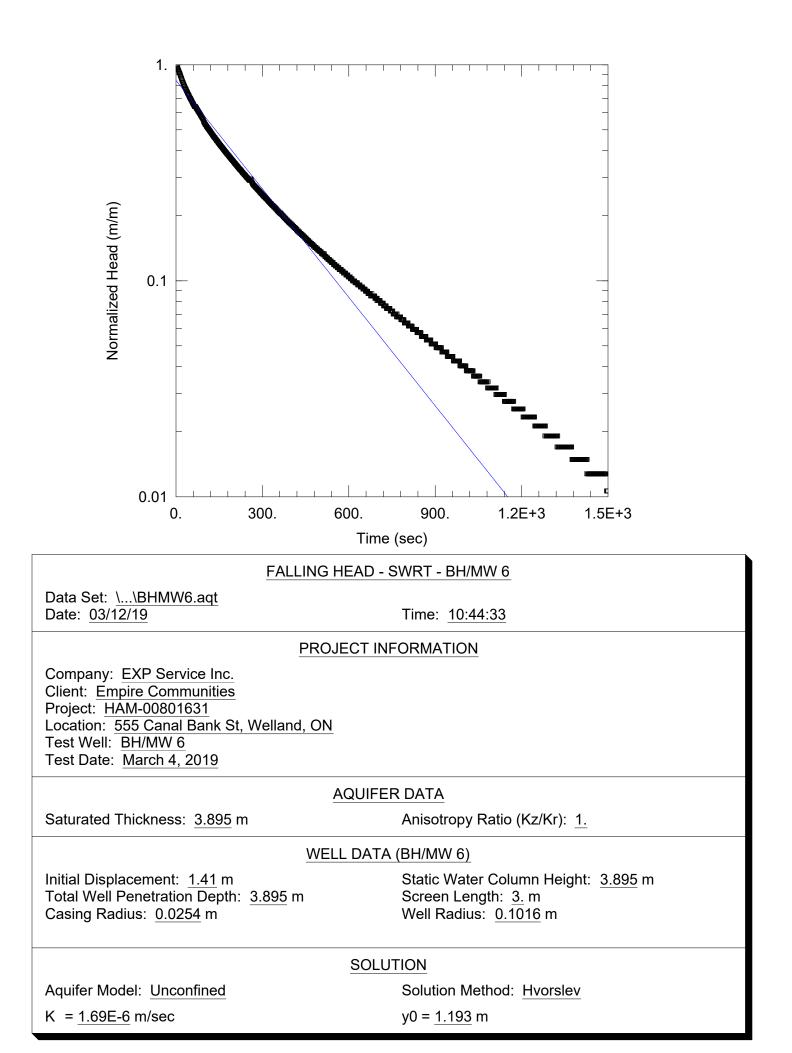
Project No.	HAM-00801631-A0					awing No	28
Project:	Proposed Subdivision				5	Sheet No.	<u>1</u> of _
Location:	555 Canal Bank Street, W	elland,	ON				
Date Drilled:	July 16, 2020		– Auger Sample		Combustible Va Natural Moistur		□ ×
Drill Type:	D-50 Track Mount. Solid S	tem.	 SPT (N) Value Dynamic Cone Test 	0 🛛	Plastic and Liqu Undrained Tria:		—0
Datum:	Geodetic		Shelby Tube Field Vane Test	■ •	% Strain at Fail Penetrometer		⊕
G Y W B L O	Soil Description	ELEV.	D N F 20 40	- Value 60 80	25	oour Reading (ppm 50 75 ture Content %	
L		m 176.66 ∕_~176.6	T Shear Strength	kPa 200		ture Content % ts (% Dry Weight) 20 30	E kN/r
FILL	SOIL: (~75 mm thick) : silty clay, trace sand and el, brown, moist		Č Č				
	Y CLAY: trace sand, brown,	~175.6	1 Ö				
_mois	it, hard			200			
			2				
			Ö				
greyi	ish brown, very stiff below 3.1 m		³ 10 O	150			
stiff I	below 4.6 m		3 50 O A				
			5				
			6				
			ð				
Bore	hole terminated at 6.7 m depth	~170.0	7				
NOT 1. Th	ES: his drawing is to be read with the ect report and project number as						
pres	ented above		8				
requ	ired before use by others.						
			9				
			10				
			11				
			12				<u>+ </u>
ех	'n				Time	Water Level	Depth Cave
	EXP Services Inc. Hamilton, Ontario	000			on completion	(m) no free water	r 6.7
	Telephone: 905.573.4 Facsimile: 905.573.96	93					

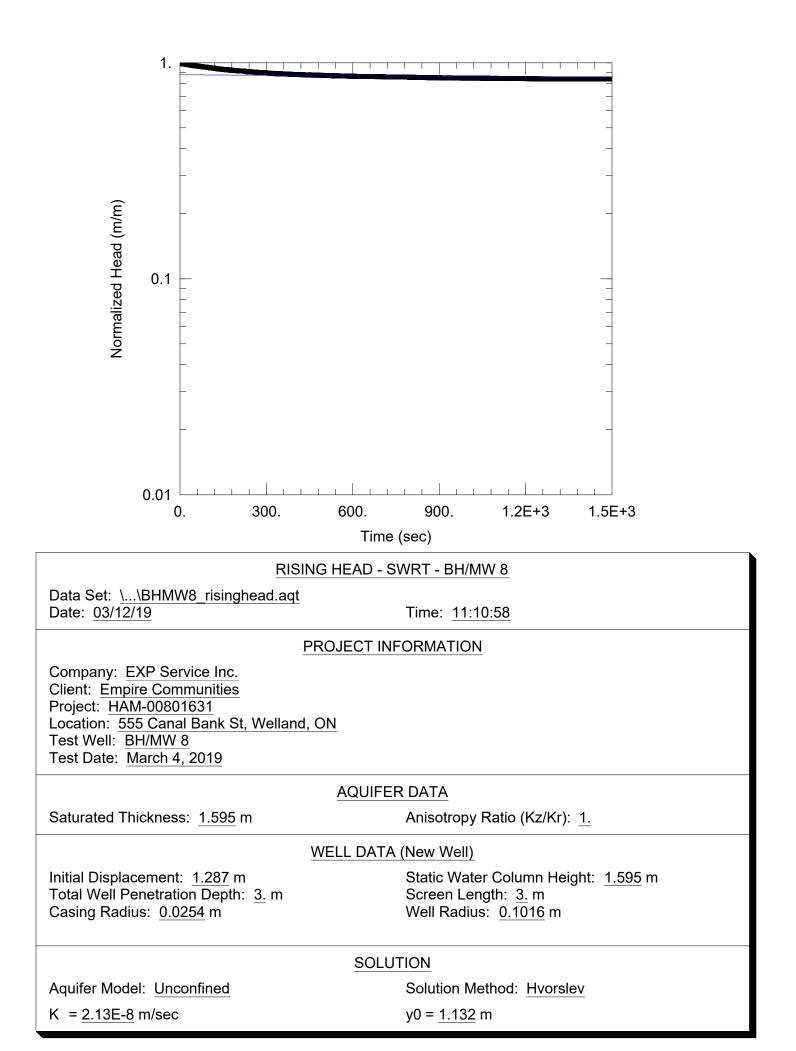
Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	6.7

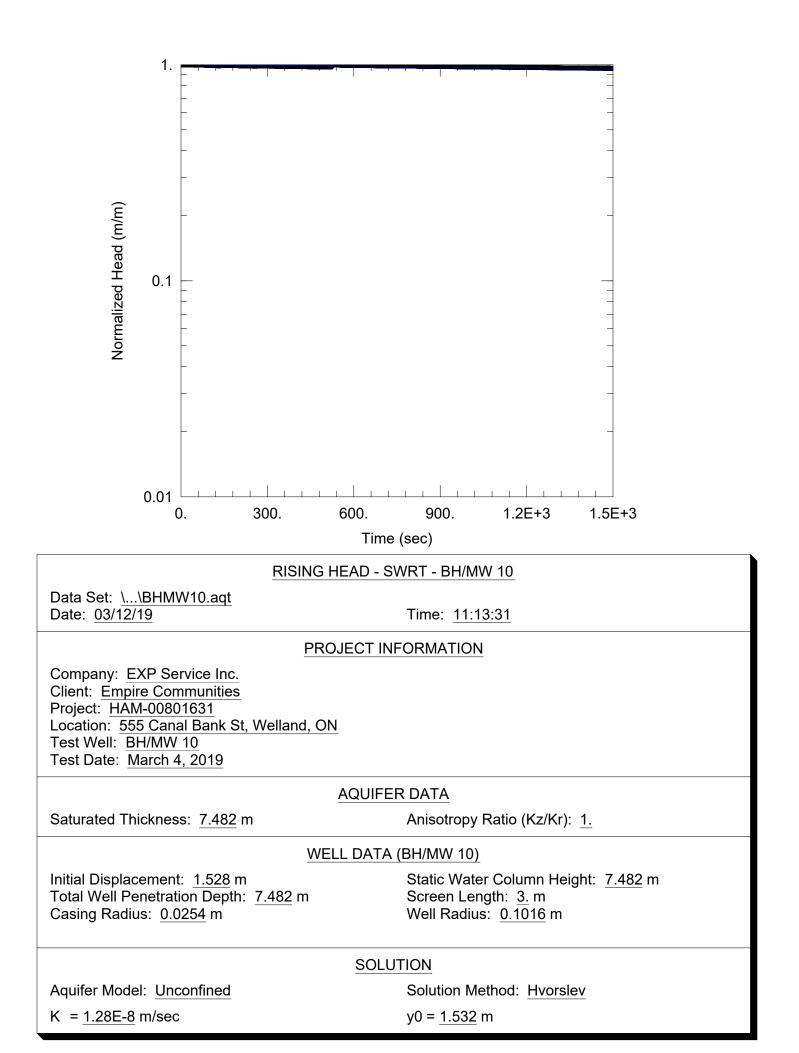
Location: 555 Canal Bank Street, Welland, ON Date Drilled: July 14, 2020 Drill Type: D-50 Track Mount. Solid Stem. Datum: Geodetic TOPSOL: (-125 mm thick) TOPSOL: (-125 mm th	Location: 555 Canal Bank Street, Welland, ON Date Drilled: July 14, 2020 Drill Type: D-50 Track Mount. Solid Stem. Datum: Geodetic Very stiff below 3.1 m very stiff below 3.1 m regured before use by others. Note: The data of the d	Project No. Project:	HAM-00801631-A0 Proposed Subdivision				awing No Sheet No.	29 1 of
Date Drilled: July 14, 2020 Drill Type: D-50 Track Mount. Solid Stem. Datum: Geodetic String Vue Pield Vue Very stiff below 3.1 m -175.7 Preprint -170.1 Borehole terminated at 6.7 m depth -170.1 NOTES: -170.1 NOTES: -170.1 Preprint Cropped to point on origin on preprint on	Date Drilled: July 14, 2020 Drill Type: D-50 Track Mount. Solid Stem. Daturn: Geodetic Service Track Mount. Solid Stem. Solid Description Track Mount. Solid Stem. Solid Description Steven Track Mount. Solid Stem. Solid Description Track Mount. Solid Stem. Solid Stew. Solid Stew.	-		nd ON		、		<u> </u>
1767SOIL: (~125 mm thick) -176.6 1 100 200 10 20 30 \$ \$ SILTY CLAY: trace sand, brown, moist, hard -175.7 -175.7 -175.7 1 0 0 -176.7 10 20 30 \$ \$ \$ 0	Image: Composition of the composite composition of the composition of the composition of th	Drill Type: Datum:	July 14, 2020 D-50 Track Mount. Solid Stem Geodetic	Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test		Natural Moistur Plastic and Liqu Undrained Tria: % Strain at Fail Penetrometer Combustible Vag 25	vid Limit xial at lure pour Reading (ppm 50 75	
	EXP Services Inc.	response of the second	SOIL: (~125 mm thick) silty clay, trace sand and al, brown, moist, black organic ng Y CLAY: trace sand, brown, t, hard stiff below 3.1 m sh brown, firm below 4.6 m 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200			

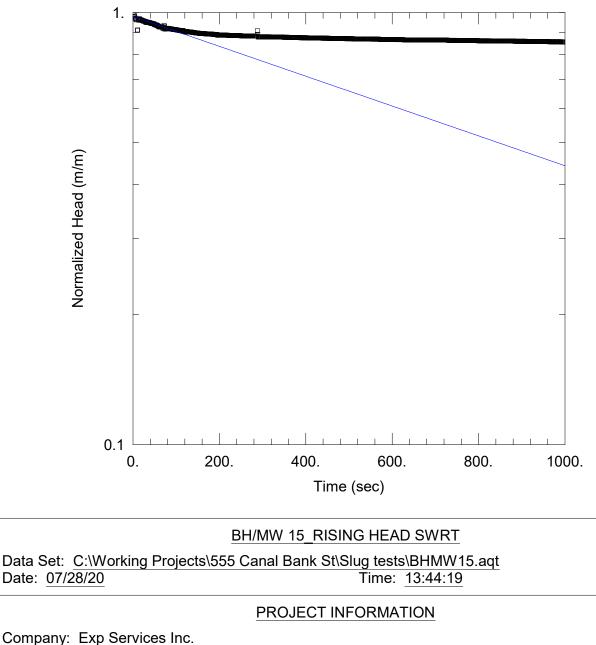



Time	Water Level (m)	Depth to Cave (m)
on completion	no free water	6.7


555 Canal Bank Development GP Inc. Hydrogeological Investigation 555 Canal Bank Street, Welland, Ontario HAM-00801631-A0 April 4, 2019 Revised: August 28, 2020


Appendix C: SWRT and Infiltration Testing Results





Client: <u>Elite Construction Inc</u> Project: <u>HAM-00801631-A0</u> Location: <u>555 Canal Bank, Welland, ON</u> Test Well: <u>BH/MW 15</u> Test Date: July 27, 2020

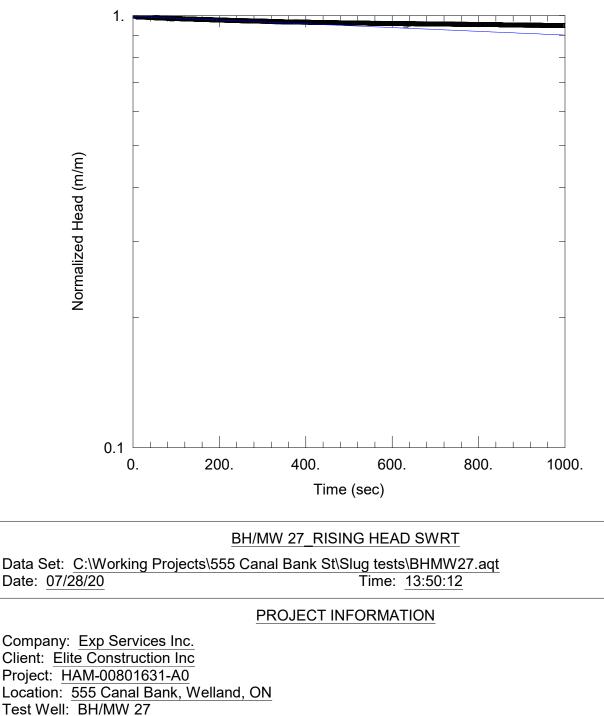
AQUIFER DATA

Saturated Thickness: 5.135 m

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH/MW 15)

Initial Displacement: 4.2 mTotal Well Penetration Depth: 5.135 mCasing Radius: 0.025 m Static Water Column Height: <u>5.135</u> m Screen Length: <u>3.</u> m Well Radius: 0.025 m


SOLUTION

Aquifer Model: Unconfined

K = 4.542E-7 m/sec

Solution Method: Hvorslev

y0 = 4.113 m

Test Date: July 27, 2020

AQUIFER DATA

Saturated Thickness: 4.21 m

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BH/MW 27)

Initial Displacement: <u>3.48</u> m Total Well Penetration Depth: <u>4.21</u> m Casing Radius: <u>0.025</u> m Static Water Column Height: <u>4.21</u> m Screen Length: <u>3.</u> m Well Radius: 0.025 m

SOLUTION

Aquifer Model: Unconfined

K = 5.731E-8 m/sec

Solution Method: Hvorslev

y0 = 3.467 m

Location:	John Deere
Date:	Jul 8 and 27, 2020
Weather:	Sunny, 35*C
Analyst:	JL

Borehole radius (cm): 3.8			
Soil class:	Strong capillarity		

Test Location	Start depth of water (cm)	End depth of water (cm)	Start time (*decimal min)	End time (*decimal min)	K _{fs} (mm/hr)	Kfs (cm/sec)	Kfs (m/sec)
IT1	34.32	31.22	0.0	16.5	0.9	2.6E-05	2.6E-07
IT2	27.91	14.52	0.0	228.2	0.4	1.2E-05	1.2E-07
IT3	36.54	33.03	0.0	137.7	0.1	3.3E-06	3.3E-08
IT4	38.7	1.5	0.0	8.3	35.5	9.9E-04	9.9E-06
IT5	23.7	22.5	0.0	4.3	2.0	5.4E-05	5.4E-07
IT6	47.11	33.8	0.0	137.7	0.4	1.0E-05	1.0E-07

John Deere Lands HAM-00801631-A0 Low Impact Design (LID) Calculations for Infiltration Gallery

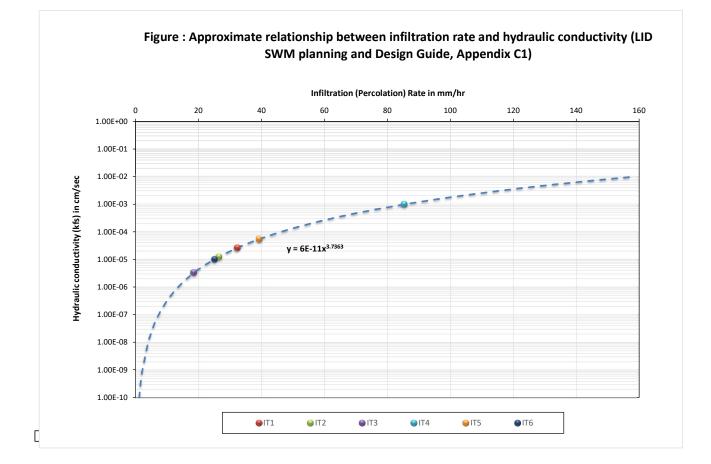
Test Location	Hydraulic Conductivity (K _{fs}) (cm/s)	Infiltration Rate (IR) (mm/hr)	Discrete Design Infiltration Rate(DIR) (mm/hr)	Perculation Time (min/cm)
IT1	2.6E-05	32	13	47
IT2	1.2E-05	26	11	57
IT3	3.3E-06	19	7	81
IT4	9.9E-04	85	34	18
IT5	5.40E-05	39	16	38
IT6	1.00E-05	25	10	60

Geology Units	Geometric Mean of K _{fs} (cm/s)	Infiltration Rate (I) (mm/hr)*	Ratio of Mean Measured Infiltration Rates	Safety Correction Factor (SCF)
Overlying Geology Unit	2.86E-05	33		0.5
Underlying Geology Unit (1.5 m below the bottom of trench)	2.86E-05	33	1.0	2.5

Design Infiltration Rate(DIR) (mm/hr)	Minimum	7	Perculation Time	18
	Maximum	34	(min/cm)	81
	Geometric Mean	14	(min/cm)	44

Note:

Analytical Solutions (CVC and TRCA 2010)


Infiltration Rate (IR) =
$$\left(\frac{K_{fs}}{6x10^{-11}}\right)^{\frac{1}{3.7363}}$$

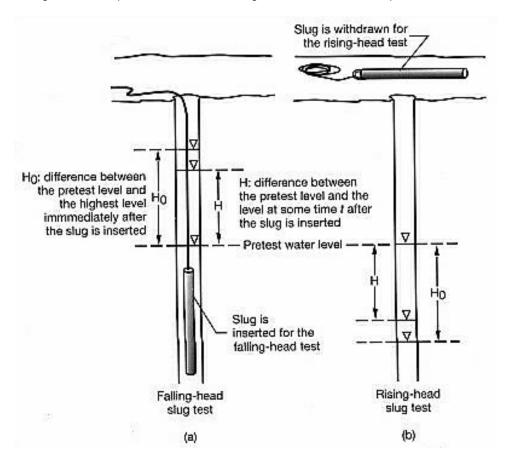
Design Infiltration Rate (DIR) = $\frac{IR}{SCF}$

Kfs: hydraulic conductivity (cm/sec)

IR: infiltration rate (mm/hr)

DIR: design infiltration rate (mm/hr)

SCF: Safety Correction Factor (based on the chart recommended by CVC and TRCA, 2010)



*exp. Single Well Response Test Procedure

A Single Well Response Test (SWRT), also known as a bail test or a slug test, is conducted in order to determine the saturated hydraulic conductivity (K) of an aquifer. The method of the SWRT is to characterize the change of groundwater level in a well or borehole over time.

In order to ensure consistency and repeatability, all **exp** employees are to follow the procedure outlined in this document when conducting SWRTs.

The figure below depicts a schematic of a slug and bail test and the respective water level changes.

Slug Test Procedure

Equipment Required

- Copy of a signed health and safety plan
- Copy of the work program
- PPE as required by Site-Specific HASP
- Copy of the monitoring well location plan/site plan
- Waterproof pen and bound field note book
- SWRT field data Entry form
- Disposable gloves
- Duct tape
- Deionized water
- Alconox (phosphate free detergent)
- Spray bottles
- Electronic water level meter and spare batteries
- Solid PVC or stainless steel slug of known volume or clean water
- String (nylon)
- Water pressure transducer (data logger) and baro-logger
- Watch or stop watch with second hand
- Plastic sheeting

Testing Procedure

- 1. Remove cap from well and collect static water level
- 2. Remove waterra tubing/bailer and place in garbage bag. Record static water level measurement again.
- 3. Lower the slug into the well and record the dynamic water level.
- 4. Record the drawdown (for the slug test) at set five (5) second intervals for the first five (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown until 95% recovery is reached. To calculate this value: Find the difference between the dynamic water level and the static water level, then multiply by 95% (.95). Add the resulting value to the dynamic water level.
 - (Static Water Level Dynamic Water Level).95 + Static Water Level = 95% Recovery Value
- 6. Once complete, replace the waterra tubing/bailer and re-secure the well cap.

Note: If the well is deep, more than one slug may be inserted by attaching the slugs to a series.

Slugs must be washed with methanol, then lab grade soap, and then rinsed with de-ionized water after each use.

Based on the recorded observations, the hydraulic conductivity (in m/s) of the aquifer will be determined. In order to determine the hydraulic conductivity; the well diameter, radius of the borehole and length of the screen will also be required.

Bail Test Procedure

Equipment Required

- 20 L (5 gal) Graduated pail
- Stop watch or watch with seconds
- Garbage bags
- Water level meter
- Field sheets/log book
- Latex Gloves
- Bailer and Rope

Procedure

- 1. Remove cap from well and collect static water level.
- 2. If using a **bailer**:
 - a. Affix the rope to the bailer.
 - b. Remove the waterra tubing and place in garbage bag
 - c. Record static water level measurement again.
 - d. Record how much water was removed by either counting the number of full bailers or emptying removed water into a container.
 - e. Quickly lower the bailer into the well and remove.
 - f. Continue this process until the water level will reduce no further.
 - g. Record the dynamic water level.
- 3. If using waterra to bail the water:
 - a. Pump the water into graduated bucket until the water level will reduce no further.
 - b. Record how much water has been removed.
 - c. Record the dynamic water level.
- 4. Record the recovery at set five (5) second intervals for the first (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown/recovery until 95% recovery is reached.
- 6. Once complete, replace any waterra tubing that may have been removed from the well and re-secure the well cap.

555 Canal Bank Development GP Inc. Hydrogeological Investigation 555 Canal Bank Street, Welland, Ontario HAM-00801631-A0 April 4, 2019 Revised: August 28, 2020

Appendix D: Laboratory's Certificates of Analysis

Your P.O. #: ENV-BRM Your Project #: HAM-00801631-A0 Site Location: John Deere Lands Your C.O.C. #: 706566-01-01

Attention: Francois Chartier

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

> Report Date: 2019/03/11 Report #: R5624491 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B956353 Received: 2019/03/04. 17:37

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Biochemical Oxygen Demand (BOD)	1	2019/03/06	2019/03/11	CAM SOP-00427	SM 23 5210B m
Total Cyanide	1	2019/03/06	2019/03/06	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2019/03/06	2019/03/06	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2019/03/06	2019/03/07	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	N/A	2019/03/06	CAM SOP-00447	EPA 6020B m
Animal and Vegetable Oil and Grease	1	N/A	2019/03/08	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2019/03/08	2019/03/08	CAM SOP-00326	EPA1664B m,SM5520A m
рН	1	N/A	2019/03/06	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2019/03/06	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Colourimetry	1	N/A	2019/03/06	CAM SOP-00464	EPA 375.4 m
Sulphide	1	N/A	2019/03/06	CAM SOP-00455	SM 23 4500-S G m
Total Kjeldahl Nitrogen in Water	1	2019/03/06	2019/03/06	CAM SOP-00938	OMOE E3516 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2019/03/08	2019/03/08	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2019/03/05	2019/03/07	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2019/03/07	CAM SOP-00226	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Your P.O. #: ENV-BRM Your Project #: HAM-00801631-A0 Site Location: John Deere Lands Your C.O.C. #: 706566-01-01

Attention: Francois Chartier

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

> Report Date: 2019/03/11 Report #: R5624491 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B956353 Received: 2019/03/04, 17:37

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory. Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. * RPDs calculated using raw data. The rounding of final results may result in the apparent difference. (1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Tanya Fidlin, Project Manager Email: tfidlin@maxxam.ca Phone# (905)817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc Client Project #: HAM-00801631-A0 Site Location: John Deere Lands Your P.O. #: ENV-BRM Sampler Initials: CS

NIAGARA SANITARY SEWER BYLAW (27-2014)

Maxxam ID			JCR222			JCR222		
Sampling Date			2019/03/04			2019/03/04		
			12:00			12:00		
COC Number			706566-01-01			706566-01-01		
	UNITS	Criteria	BH/MW10	RDL	QC Batch	BH/MW10 Lab-Dup	RDL	QC Batch
Calculated Parameters								
Total Animal/Vegetable Oil and Grease	mg/L	150	2.0	0.50	6000560			
Inorganics								
Total BOD	mg/L	300	ND	2	6004412			
Fluoride (F-)	mg/L	10	0.21	0.10	6004184			
Total Kjeldahl Nitrogen (TKN)	mg/L	100	0.22	0.10	6004518	0.24	0.10	6004518
рН	рН	6.0:11	7.53		6004180			
Phenols-4AAP	mg/L	1	ND	0.0010	6004239			
Total Suspended Solids	mg/L	350	10	10	6002328			
Dissolved Sulphate (SO4)	mg/L	1500	1300	5.0	6002487			
Sulphide	mg/L	1	ND	0.020	6004407	ND	0.020	6004407
Total Cyanide (CN)	mg/L	1	ND	0.0050	6005125			
Petroleum Hydrocarbons								
Total Oil & Grease	mg/L	-	2.0	0.50	6008228			
Total Oil & Grease Mineral/Synthetic	mg/L	15	ND	0.50	6008231			
Metals								
Mercury (Hg)	mg/L	0.01	ND	0.0001	6004589			
Total Antimony (Sb)	ug/L	5000	0.80	0.50	6004480	0.76	0.50	6004480
Total Arsenic (As)	ug/L	1000	1.2	1.0	6004480	1.2	1.0	6004480
Total Cadmium (Cd)	ug/L	700	ND	0.10	6004480	ND	0.10	6004480
Total Chromium (Cr)	ug/L	3000	ND	5.0	6004480	ND	5.0	6004480
Total Cobalt (Co)	ug/L	5000	1.3	0.50	6004480	1.3	0.50	6004480
Total Copper (Cu)	ug/L	3000	1.5	1.0	6004480	1.5	1.0	6004480
Total Lead (Pb)	ug/L	1000	ND	0.50	6004480	ND	0.50	6004480
Total Molybdenum (Mo)	ug/L	5000	5.4	0.50	6004480	5.6	0.50	6004480
Total Nickel (Ni)	ug/L	2000	2.2	1.0	6004480	2.4	1.0	6004480
No Fill No Exceedance								
Grey Exceeds 1 criteria	policy/l	evel						
Black Exceeds both criteria/levels								
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								

Lab-Dup = Laboratory Initiated Duplicate

Criteria: By-Law To Regulate Discharges To The Sanitary And Storm Sewer Systems Of The Regional Municipality Of Niagara BY-LAW No. 27-2014

ND = Not detected

exp Services Inc Client Project #: HAM-00801631-A0 Site Location: John Deere Lands Your P.O. #: ENV-BRM Sampler Initials: CS

NIAGARA SANITARY SEWER BYLAW (27-2014)

Maxxam ID			JCR222			JCR222		
Sampling Date			2019/03/04			2019/03/04		
			12:00			12:00		
COC Number			706566-01-01			706566-01-01		
	UNITS	Criteria	BH/MW10	RDL	QC Batch	BH/MW10 Lab-Dup	RDL	QC Batch
Total Phosphorus (P)	ug/L	-	ND	100	6004480	ND	100	6004480
Total Selenium (Se)	ug/L	1000	ND	2.0	6004480	ND	2.0	6004480
Total Silver (Ag)	ug/L	5000	ND	0.10	6004480	ND	0.10	6004480
Total Tin (Sn)	ug/L	5000	3.6	1.0	6004480	3.6	1.0	6004480
Total Zinc (Zn)	ug/L	3000	ND	5.0	6004480	ND	5.0	6004480
Volatile Organics					•	•		
Benzene	ug/L	10	ND	1.0	6004666			
Chloroform	ug/L	40	ND	1.0	6004666			
1,2-Dichlorobenzene	ug/L	50	ND	2.0	6004666			
1,4-Dichlorobenzene	ug/L	80	ND	2.0	6004666			
Ethylbenzene	ug/L	160	ND	1.0	6004666			
Methylene Chloride(Dichloromethane)	ug/L	210	ND	5.0	6004666			
1,1,2,2-Tetrachloroethane	ug/L	40	ND	2.0	6004666			
Tetrachloroethylene	ug/L	50	ND	1.0	6004666			
Toluene	ug/L	200	ND	2.0	6004666			
Trichloroethylene	ug/L	50	ND	1.0	6004666			
p+m-Xylene	ug/L	-	ND	1.0	6004666			
o-Xylene	ug/L	520	ND	1.0	6004666			
Total Xylenes	ug/L	-	ND	1.0	6004666			
Surrogate Recovery (%)								
4-Bromofluorobenzene	%	-	97		6004666			
D4-1,2-Dichloroethane		-	100		6004666			
D8-Toluene	%	-	101		6004666			
No Fill No Exceedance								
Grey Exceeds 1 criteria	policy/l	evel						
Black Exceeds both criteria/levels								
BDI = Reportable Detection Limit	•							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: By-Law To Regulate Discharges To The Sanitary And Storm Sewer Systems Of The Regional Municipality Of Niagara BY-LAW No. 27-2014

ND = Not detected

Report Date: 2019/03/11

exp Services Inc Client Project #: HAM-00801631-A0 Site Location: John Deere Lands Your P.O. #: ENV-BRM Sampler Initials: CS

TEST SUMMARY

Maxxam ID:	JCR222
Sample ID:	BH/MW10
Matrix:	Water

Collected:	2019/03/04
Shipped:	
Received:	2019/03/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Biochemical Oxygen Demand (BOD)	DO	6004412	2019/03/06	2019/03/11	Althea Gonzalez
Total Cyanide	SKAL/CN	6005125	2019/03/06	2019/03/06	Xuanhong Qiu
Fluoride	ISE	6004184	2019/03/06	2019/03/06	Surinder Rai
Mercury in Water by CVAA	CV/AA	6004589	2019/03/06	2019/03/07	Medhat Nasr
Total Metals Analysis by ICPMS	ICP/MS	6004480	N/A	2019/03/06	Matthew Ritenburg
Animal and Vegetable Oil and Grease	BAL	6000560	N/A	2019/03/08	Automated Statchk
Total Oil and Grease	BAL	6008228	2019/03/08	2019/03/08	Francis Afonso
рН	AT	6004180	N/A	2019/03/06	Surinder Rai
Phenols (4AAP)	TECH/PHEN	6004239	N/A	2019/03/06	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	6002487	N/A	2019/03/06	Alina Dobreanu
Sulphide	ISE/S	6004407	N/A	2019/03/06	Gnana Thomas
Total Kjeldahl Nitrogen in Water	SKAL	6004518	2019/03/06	2019/03/06	Rajni Tyagi
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	6008231	2019/03/08	2019/03/08	Francis Afonso
Total Suspended Solids	BAL	6002328	2019/03/05	2019/03/07	Mandeep Kaur
Volatile Organic Compounds in Water	P&T/MS	6004666	N/A	2019/03/07	Dina Wang

Maxxam ID:	JCR222 Dup
Sample ID:	BH/MW10
Matrix:	Water

Collected:	2019/03/04
Shipped:	
Received:	2019/03/04

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Metals Analysis by ICPMS	ICP/MS	6004480	N/A	2019/03/06	Matthew Ritenburg
Sulphide	ISE/S	6004407	N/A	2019/03/06	Gnana Thomas
Total Kjeldahl Nitrogen in Water	SKAL	6004518	2019/03/06	2019/03/06	Rajni Tyagi

exp Services Inc Client Project #: HAM-00801631-A0 Site Location: John Deere Lands Your P.O. #: ENV-BRM Sampler Initials: CS

GENERAL COMMENTS

Each te	Each temperature is the average of up to three cooler temperatures taken at receipt										
Į	Package 1	2.0°C]								
Sample JCR222 [BH/MW10] : VOC Water Analysis: Due to foaming, sample required dilution. The detection limits were adjusted accordingly.											
Results relate only to the items tested.											

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca

Maxxam Job #: B956353 Report Date: 2019/03/11

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: HAM-00801631-A0 Site Location: John Deere Lands Your P.O. #: ENV-BRM Sampler Initials: CS

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6004666	4-Bromofluorobenzene	2019/03/07	98	70 - 130	98	70 - 130	96	%				
6004666	D4-1,2-Dichloroethane	2019/03/07	97	70 - 130	100	70 - 130	94	%				
6004666	D8-Toluene	2019/03/07	101	70 - 130	102	70 - 130	103	%				
6002328	Total Suspended Solids	2019/03/07					ND, RDL=10	mg/L	0	25	100	85 - 115
6002487	Dissolved Sulphate (SO4)	2019/03/06	NC	75 - 125	106	80 - 120	ND, RDL=1.0	mg/L	0.62	20		
6004180	рН	2019/03/06			102	98 - 103			0.48	N/A		
6004184	Fluoride (F-)	2019/03/06	85	80 - 120	101	80 - 120	ND, RDL=0.10	mg/L	1.0	20		
6004239	Phenols-4AAP	2019/03/06	97	80 - 120	98	80 - 120	ND, RDL=0.0010	mg/L	NC	20		
6004407	Sulphide	2019/03/06	91	80 - 120	88	80 - 120	ND, RDL=0.020	mg/L	NC	20		
6004412	Total BOD	2019/03/11					ND,RDL=2	mg/L	NC	30	97	80 - 120
6004480	Total Antimony (Sb)	2019/03/06	100	80 - 120	98	80 - 120	ND, RDL=0.50	ug/L	5.3	20		
6004480	Total Arsenic (As)	2019/03/06	97	80 - 120	97	80 - 120	ND, RDL=1.0	ug/L	0.90	20		
6004480	Total Cadmium (Cd)	2019/03/06	97	80 - 120	98	80 - 120	ND, RDL=0.10	ug/L	NC	20		
6004480	Total Chromium (Cr)	2019/03/06	94	80 - 120	93	80 - 120	ND, RDL=5.0	ug/L	NC	20		
6004480	Total Cobalt (Co)	2019/03/06	98	80 - 120	97	80 - 120	ND, RDL=0.50	ug/L	0.99	20		
6004480	Total Copper (Cu)	2019/03/06	94	80 - 120	93	80 - 120	ND, RDL=1.0	ug/L	2.6	20		
6004480	Total Lead (Pb)	2019/03/06	94	80 - 120	95	80 - 120	ND, RDL=0.50	ug/L	NC	20		
6004480	Total Molybdenum (Mo)	2019/03/06	102	80 - 120	96	80 - 120	ND, RDL=0.50	ug/L	4.5	20		
6004480	Total Nickel (Ni)	2019/03/06	94	80 - 120	95	80 - 120	ND, RDL=1.0	ug/L	11	20		
6004480	Total Phosphorus (P)	2019/03/06	100	80 - 120	102	80 - 120	ND, RDL=100	ug/L	NC	20		
6004480	Total Selenium (Se)	2019/03/06	102	80 - 120	101	80 - 120	ND, RDL=2.0	ug/L	NC	20		
6004480	Total Silver (Ag)	2019/03/06	96	80 - 120	97	80 - 120	ND, RDL=0.10	ug/L	NC	20		
6004480	Total Tin (Sn)	2019/03/06	99	80 - 120	95	80 - 120	ND, RDL=1.0	ug/L	1.4	20		
6004480	Total Zinc (Zn)	2019/03/06	95	80 - 120	99	80 - 120	ND, RDL=5.0	ug/L	NC	20		
6004518	Total Kjeldahl Nitrogen (TKN)	2019/03/06	106	80 - 120	98	80 - 120	ND, RDL=0.10	mg/L	8.7	20	97	80 - 120
6004589	Mercury (Hg)	2019/03/07	96	75 - 125	98	80 - 120	ND, RDL=0.0001	mg/L	NC	20		
6004666	1,1,2,2-Tetrachloroethane	2019/03/07	99	70 - 130	94	70 - 130	ND, RDL=0.20	ug/L	NC	30		
6004666	1,2-Dichlorobenzene	2019/03/07	98	70 - 130	90	70 - 130	ND, RDL=0.20	ug/L	NC	30		
6004666	1,4-Dichlorobenzene	2019/03/07	100	70 - 130	90	70 - 130	ND, RDL=0.20	ug/L	NC	30		

Maxxam Job #: B956353 Report Date: 2019/03/11

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: HAM-00801631-A0 Site Location: John Deere Lands Your P.O. #: ENV-BRM Sampler Initials: CS

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RPD		QC Sta	andard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
6004666	Benzene	2019/03/07	98	70 - 130	88	70 - 130	ND, RDL=0.10	ug/L	NC	30		
6004666	Chloroform	2019/03/07	98	70 - 130	88	70 - 130	ND, RDL=0.10	ug/L	13	30		
6004666	Ethylbenzene	2019/03/07	100	70 - 130	89	70 - 130	ND, RDL=0.10	ug/L	NC	30		
6004666	Methylene Chloride(Dichloromethane)	2019/03/07	94	70 - 130	87	70 - 130	ND, RDL=0.50	ug/L	NC	30		
6004666	o-Xylene	2019/03/07	103	70 - 130	92	70 - 130	ND, RDL=0.10	ug/L	NC	30		
6004666	p+m-Xylene	2019/03/07	104	70 - 130	92	70 - 130	ND, RDL=0.10	ug/L	NC	30		
6004666	Tetrachloroethylene	2019/03/07	96	70 - 130	85	70 - 130	ND, RDL=0.10	ug/L	NC	30		
6004666	Toluene	2019/03/07	100	70 - 130	89	70 - 130	ND, RDL=0.20	ug/L	15	30		
6004666	Total Xylenes	2019/03/07					ND, RDL=0.10	ug/L	NC	30		
6004666	Trichloroethylene	2019/03/07	96	70 - 130	87	70 - 130	ND, RDL=0.10	ug/L	NC	30		
6005125	Total Cyanide (CN)	2019/03/06	100	80 - 120	106	80 - 120	ND, RDL=0.0050	mg/L	NC	20		
6008228	Total Oil & Grease	2019/03/08			101	85 - 115	ND, RDL=0.50	mg/L	2.8	25		
6008231	Total Oil & Grease Mineral/Synthetic	2019/03/08			96	85 - 115	ND, RDL=0.50	mg/L	4.3	25		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Report Date: 2019/03/11

exp Services Inc Client Project #: HAM-00801631-A0 Site Location: John Deere Lands Your P.O. #: ENV-BRM Sampler Initials: CS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	IN	VOICE TO:				REPO	RT TO:				PR	OJECT INFOR	MATION:				Laboratory Use 0	Only:
mpany Name	#30554 exp Ser	vices Inc		Company	Name:	EX	PSER	VICE	SINC	Quotation #:	В	45997	11.16	The second	1.000		Maxxam Job #:	Bottle Order #:
antion:	Central Services	Sec. 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12	TRANSPORT IN	Attention		s Chartier	1.0	SARE	- 11 m	P.O. #:			ENV	-BRN	1			
fress:	1595 Clark Blvd	1.1.102.1.1.1°.141	10,22,8102	Address:	TEFFREY, LEON @ EXP. COM Project HAM-00801631-A0													
	Brampton ON L6	T 4V1	(- (B) - (B) -				COC #:	706566 Project Manager										
	(905) 793-9800	Fax (S	905) 793-064	1 Tel:	(905) 79	93-9800 Ext:	2523 Fax			Project Name: Site #:	J	John Deere Lands					i toject managa	
ait:	Karen.Burke@ex	p.com; Luizza.Jose			Francoi	s.Chartier@e	xp.com To	MSON	HECKYQI	xp.con	n —	CS					C#706566-01-01	Tanya Fidlin
MOE RE	GULATED DRINKING	WATER OR WATE		FOR HUMAN C	ONSUMPTION	MUSTRE	-	T		ALYSIS REQUE			-				Turnaround Time (TAT) Re	and the de
MOL INL	SUBMITTED C	ON THE MAXXAM D	RINKING WA	TER CHAIN OF C	USTODY	NICOLDE					2120 11 22				12010		Please provide advance notice for	
Begula	tion 153 (2011)		Other Regulatio		Special Ins		circle): VI	(27-							Reg	ular (S	tandard) TAT:	Construction of the owner of the
10.04	Res/Park Medium		Sanitary Sew		Special Ins	tructions	< circ	W (2							(will b	be applied	d if Rush TAT is not specified):	
restrate and the	Ind/Comm Coarse		Storm Sewer				Gr	Byte		1 1					Stand	dard TAT	= 5-7 Working days for most tests	
	Agri/Other For RS			IAGARA.			(please	wer		1 1					Pleas	e note: S	Standard TAT for certain tests such as Bi your Project Manager for details.	D and Dioxins/Furans a
Table		PWQO					Field Filtered (please c Metals / Hg / Cr VI	y Se							1.000	second due	Rush TAT (if applies to entire subm	
		Other	ALLAND.				etal	anta								Required		e Required:
	Include Criteria	a on Certificate of An	alvsis (Y/N)?	Y			pie W	a Sa							122,065	Statute and	ation Number:	
Sam	ple Barcode Label	Sample (Location)		Date Sampled	Time Sampled	Matrix	Ē	Niagara 2014)							# of	Bottles	(ca Comme	ill lab for #)
						materia		ZÑ								anisto at		22.555
		BH/MW	10	04/03/19	12:00	GW	X	X							1.	3	5 DAY FIRM	
			ALL					1			_					-	AROUND TI	ME
											_							
							11.42									1		
											_							
							1.1											
-								_				_						
									10		1							
								-				04.14	- 10	· .				
							5 D C X				Tom	04-M	ar-19	7:37				
-								-			1 11 1 11	ya Fidli	n		1			
						, 6 ²								11				
											1	B95635	3		L			
							11,0,7**				GK1							
-											on	ENI	/-1091					
				1.1									1	Г. т.	1			
			Date: (Y)														v	
	· RELINQUISHED BY: (S	Signature/Print)			0		BY: (Signature/		Date: (YY	and the second se	Time		s used and submitted			Laborat	tory Use Only	
nant	elSimon/		440	3 04 17:3	6 pr	1 Jet	AUDIA	ANVAN	1 2017	03 04	173	2		Time Sen	16		re ("C) on Recei Custody Se Present	al Yes
										- U.			183	- N.	1. I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I	2 3	ZZICE Intact	6
NOWLEDG	ERWISE AGREED TO IN W MENT AND ACCEPTANCE	RITING, WORK SUBMITTE OF OUR TERMS WHICH	ARE AVAILABLE	FOR VIEWING AT WW	JECT TO MAXXAM	'S STANDARD TE MS.	RMS AND CON	DITIONS. S	SIGNING OF THIS CH	AIN OF CUSTODY	DOCUMEN	IT IS	200-1				Whi	te: Maxxa Yellow
IS THE RES	PONSIBILITY OF THE REL	INQUISHER TO ENSURE	THE ACCURACY	OF THE CHAIN OF CU	STODY RECORD. A	N INCOMPLETE	HAIN OF CUST	ODY MAY	RESULT IN ANALYTIC	AL TAT DELAYS			SAMP	LES MUST BE	KEPT COOL	(< 10° C) FROM TIME OF SAMPLING	
	TAINER, PRESERVATION									a na sentera esta da se			1 mil	E. O. S. Martin	ON THE DELIVI	ERT IO	MAAAAM	
													いたりなほう		an and a second second	a superv		

exp Services Inc Client Project #: HAM-00801631-A0 Site Location: John Deere Lands Your P.O. #: ENV-BRM Sampler Initials: CS

Exceedence Summary Table – Niagara Combined Sewer

Result Exceedences

Sample ID	Maxxam ID	Parameter	Criteria	Result	DL	Units				
No Exceedences										
The exceedence summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to										
applicable regulatory g	guidelines.									

555 Canal Bank Development GP Inc. Hydrogeological Investigation 555 Canal Bank Street, Welland, Ontario HAM-00801631-A0 April 4, 2019 Revised: August 28, 2020

Appendix E: Construction Dewatering Estimates (Short-Term)

APPENDIX E: Construction Dewatering Calculations

Site Name John Deere Project Number HAM-00801631-A0

Table E-1: Flow all Sides of the Excavation

Parameters	Symbols	Unit	Underground Services	SWMP (Southwest)	SWMP (Northeast)	Fifty Single Dwellings
Geological Formation	-	-	Glacial Deposit	Glacial Deposit	Glacial Deposit	Glacial Deposit
Ground Elevation	-	mASL	177.9	177.9	176.9	177.9
Highest Groundwater Elevation	-	mASL	177.3	177.3	177.3	177.3
Top of the Water-Bearing Zone	-	mASL	177.3	177.3	177.3	177.3
Base of the Water-Bearing Zone	-	mASL	170.4	170.4	170.4	170.4
Height of Static Water Table Above the Base of the Water-Bearing Zone	н	m	6.88	6.88	6.90	6.88
Dewatered Elevation Target	-	mASL	172.90	171.90	174.88	172.40
Height of Target Water Level Above the Base of Water-Bearing Zone	h _w	m	2.50	1.50	4.48	2.00
Hydraulic Conductivity	к	m/s	3.20E-07	3.20E-07	3.20E-07	3.20E-07
Length of Excavation	-	m	100.0	189.6	45.0	250.0
Width of Excavation	-	m	5.0	58.6	25.0	10.0
Method to Calculate Radius of Influence	-	-	Sichardt	Sichardt	Sichardt	Sichardt
Radius of Influence from Sides of Excavation	Ro	m	7.4	9.1	4.1	8.3
Distance to Linear Source from Sides of excavation	Lo=Ro/2	m	3.7	4.6	2.1	4.1
Dewatering Flow Rate (unconfined linear flow component)	Q	m ³ /day	32	68	26	75
Factor of Safety	FS	-	2.0	2.0	2.0	2.0
Dewatering Flow Rate (multiplied by factor of safety)	Q.FS	m³/day	64	136	52	150

(Based on the Dupuit Equation)

Table E-2: Precipitation Estimate

Location	Assumed Precipitation Event (mm)	Length of Excavation (m)	Width of Excavation (m)	Rainwater Collection (m ³)
Services	15	100.0	5.0	8
SWMP-Southwest	15	190	59	167
SWMP-Northeast	15	45	25	17
Fifty (50) Single Dwellings	15	250	10	38

Table E-3: Total Flow Estimate

Locations	Symbols	Unit	Value
Underground Services (with safety factor and stormwater)			72
SWMP-Northeast (with safety factor and stormwater)	Q (Total)	m³/dav	302
SWMP-Southwest (with safety factor and stormwater)	Q (Total)	m /day	69
Fifty (50) Single Dwellings (with safety factor and stormwater)			188

Notes:

mASL - meters above sea level

Analytical Solution for Estimating Plane Flow from an Unconfined Aquifer to a Fully-Penetrating Excavation

$$Q_w = Kx \frac{H^2 - {h_w}^2}{L_o}$$

Where:

 $Q_{\rm w}$ = Flow rate per unit length of excavation (m³/s)

K = Hydraulic conductivity (m/s)

H = Height of static water table above base of water-bearing zone (m)

 h_w = Height of target water level above the base of water-bearing zone (m)

L_o=Distance of Influence (m) x=Length of excavation (m)

Appendix F: Post-Construction Dewatering Estimates (Long-Term)

APPENDIX F: Long-Term Flow Rate

Site Name John Deere

Project Number HAM-00801631-A0

Table F-1: Flow from Under-Slab Drain System

Parameters	Symbols	Unit	A Single Dwelling
Geological Formation	-	-	Glacial Deposit
Ground Elevation	-	mASL	177.90
Highest Groundwater Elevation	-	mASL	177.28
Top of the Water-Bearing Zone	-	mASL	177.28
Base of the Water-Bearing Zone	-	mASL	172.40
Height of Static Water Table Above the Base of the Water-Bearing Zone	н	m	4.88
Dewatered Elevation Target	-	mASL	175.40
Height of Target Water Level Above the Base of Water-Bearing Zone	h _w	m	3.00
Hydraulic Conductivity	К	m/s	3.20E-07
Length of Excavation	-	m	10.00
Width of Excavation	-	m	5.00
Method to Calculate Radius of Influence	-	-	Sichardt
Radius of Influence from Sides of Excavation	Ro	m	3.19
Distance to Linear Source from Sides of excavation	Lo=Ro/2	m	1.60
Dewatering Flow Rate (unconfined linear flow component)	Q	m ³ /day	3.15
Factor of Safety	fs	-	1.50
Dewatering Flow Rate (multiplied by factor of safety)	Q.fs	m³/day	4.73

Notes:

mASL - meters above sea level

Analytical Solution for Estimating Plane Flow from an Unconfined Aquifer to a Partially-Penetrating Excavation

$$Q_{w} = \left[0.73 + 0.23 \left(\frac{P}{H}\right)\right] K x \frac{H^{2} - {h_{w}}^{2}}{L_{o}}$$

(Based on the Dupuit Equation)

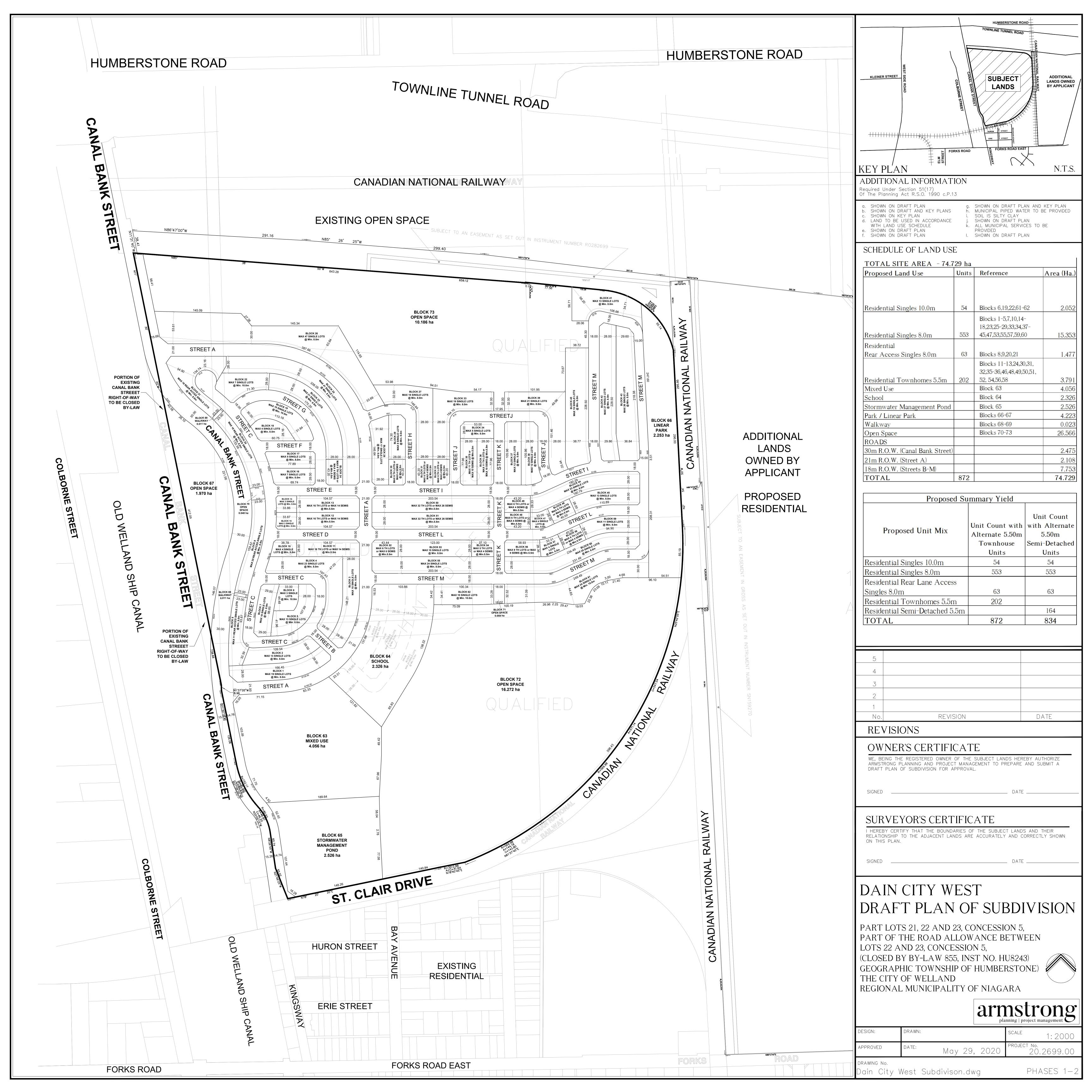
Where:

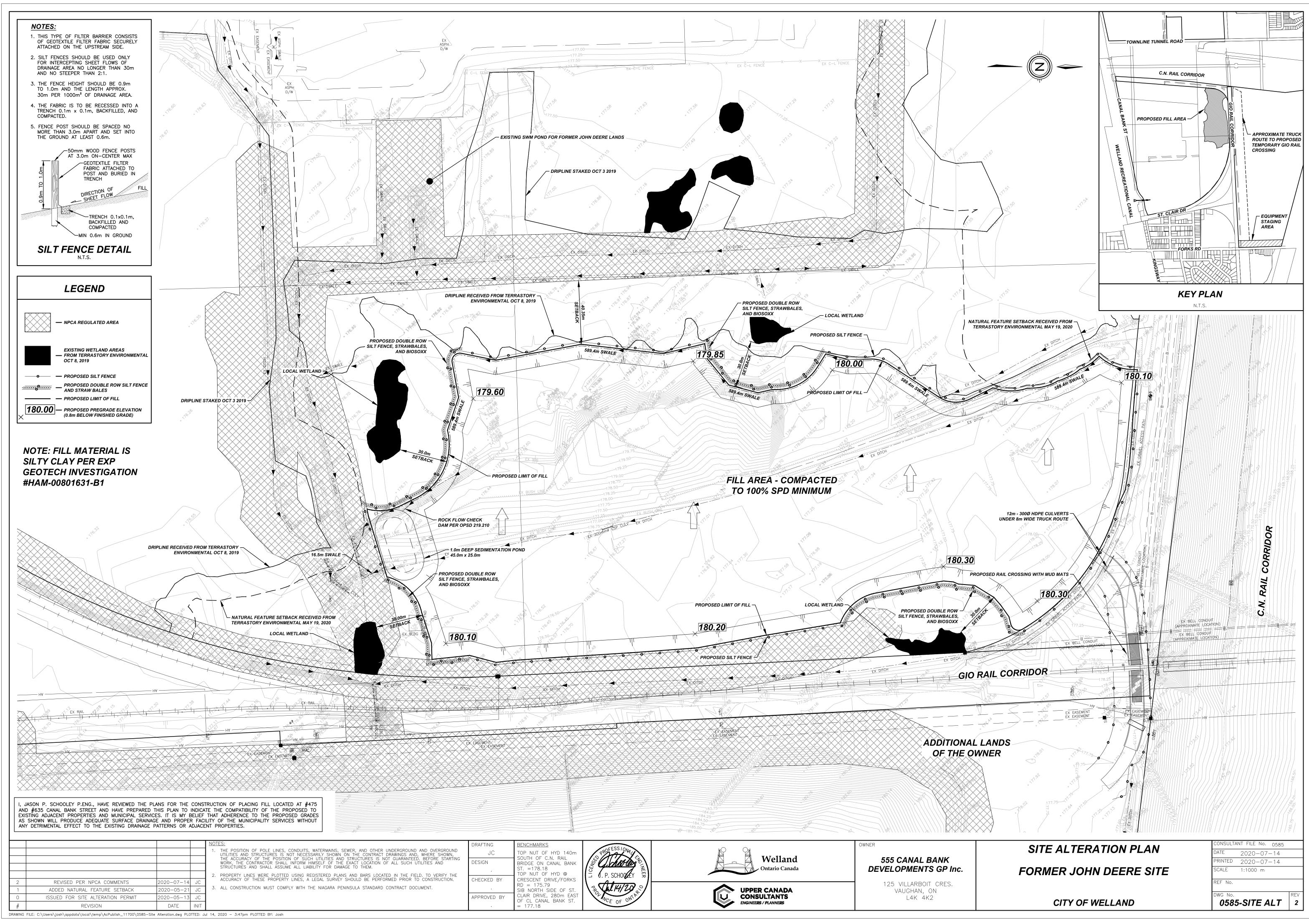
- Q_w = Flow rate per unit length of excavation (m³/s)
- P = Depth of penetration of the excavation below the original water table (m)

K = Hydraulic conductivity (m/s)

H = Height of static water table above base of water-bearing zone (m)

 $h_{\rm w}$ = Height of target water level above the base of water-bearing zone $\mbox{ (m)}$


L_o=Distance of Influence (m)


x=Length of excavation (m)

555 Canal Bank Development GP Inc. Hydrogeological Investigation 555 Canal Bank Street, Welland, Ontario HAM-00801631-A0 April 4, 2019 Revised: August 28, 2020

Appendix G: Engineering Drawings

				VERIFY STRUCTI	
ITR	ACT	DOCL	MENT		